题目链接

/*
数列的最大值保证<=50000(k),可以直接用莫队。否则要离散化
*/
#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
const int N=5e4+5; int n,m,k,size,A[N],times[N];
long long ans[N],now;
struct Ques
{
int l,r,id;
bool operator <(const Ques &a)const
{
return l/size==a.l/size ? r<a.r : l/size<a.l/size;
}
}q[N]; inline int read()
{
int now=0,f=1;register char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=getchar());
return now*f;
} void Add(int p)
{
// now-=times[A[p]]*times[A[p]];
now+=2*times[A[p]]+1;//(n+1)^2 与 n^2 相差 2n+1
++times[A[p]];
// now+=times[A[p]]*times[A[p]];
}
void Subd(int p)
{
// now-=times[A[p]]*times[A[p]];
now-=2*times[A[p]]-1;//(n-1)^2 与 n^2 相差 -2n+1 = -(2n-1)
--times[A[p]];
// now+=times[A[p]]*times[A[p]];
} int main()
{
n=read(),m=read(),k=read();
size=sqrt(n);
for(int i=1;i<=n;++i)
A[i]=read();
for(int i=1;i<=m;++i)
q[i].l=read(), q[i].r=read(), q[i].id=i;
sort(q+1,q+1+m);
for(int i=1,l=1,r=0;i<=m;++i)
{
int ln=q[i].l,rn=q[i].r;
while(l<ln) Subd(l++);
while(l>ln) Add(--l);
while(r<rn) Add(++r);
while(r>rn) Subd(r--);
ans[q[i].id]=now;
}
for(int i=1;i<=m;++i)
printf("%lld\n",ans[i]); return 0;
}

洛谷.2709.小B的询问(莫队)的更多相关文章

  1. 洛谷P2709 小B的询问 莫队

    小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...

  2. 洛谷P2709 小B的询问 莫队做法

    题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...

  3. 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)

    莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...

  4. 洛谷2709 小B的询问(莫队)

    题面 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R] ...

  5. luogu 2709 小B的询问 莫队

    题目链接 Description 小B有一个序列,包含\(N\)个\(1-K\)之间的整数.他一共有\(M\)个询问,每个询问给定一个区间\([L..R]\),求\(\sum_{i=1}^{K}c_i ...

  6. luogu 2709小b的询问--莫队

    https://www.luogu.org/problemnew/show/P2709 无修改的莫队几乎没有什么太高深的套路,比较模板吧,大多都是在那两个函数上动手脚. 这题询问每一种数字数量的平方和 ...

  7. 洛谷——P2709 小B的询问

    P2709 小B的询问 莫队算法,弄两个指针乱搞即可 这应该是基础莫队了吧 $x^2$可以拆成$((x-1)+1)^2$,也就是$(x-1)^2+1^2+2\times (x-1)$,那么如果一个数字 ...

  8. 洛谷 P2709 小B的询问(莫队)

    题目链接:https://www.luogu.com.cn/problem/P2709 这道题是模板莫队,然后$i$在$[l,r]$区间内的个数就是$vis[ ]$数组 $add()$和$del()$ ...

  9. [洛谷 P2709] 小B的询问

    P2709 小B的询问 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数 ...

随机推荐

  1. 八大最安全的Linux发行版,具备匿名功能,做服务器的首选,web,企业服务器等

    10 best Linux distros for privacy fiends and security buffs in 2017 Introduction The awesome operati ...

  2. WIN10 ISO 官方

    WIN10   ISO  官方: https://www.microsoft.com/zh-cn/software-download/windows10ISO/

  3. mac使用influxdb和grafana

    mac使用influxdb和grafana influxdb安装以及配置 brew update brew install influxdb ln -sfv /usr/local/opt/influx ...

  4. 字符串cookies转字典 scrapy使用。

    配置文件 DOWNLOADER_MIDDLEWARES = { 'weibo.middlewares.CookiesMiddleware': 543, } 中间件内容 class CookiesMid ...

  5. plsql developer无法识别32位oracle问题如何解决?

    1.登录PL/SQL Developer这里省略Oracle数据库和PL/SQL Developer的安装步骤,注意在安装PL/SQL Developer软件时,不要安装在Program Files ...

  6. centos中创建自动备份Mysql脚本任务并定期删除过期备份

    背景: OA系统数据库是mysql,引擎为myisam,可以直接通过拷贝数据库文件的方式进行备份 创建只备份数据库的任务: 创建保存mysql数据库备份文件的目录mysqlbak mkdir /hom ...

  7. PYTHON-文件指针的移动,移动和函数基础

    # 文件内指针的移动 #大前提:文件内指针的移动是Bytes为单位的,唯独t模式下的read读取内容个数是以字符为单位 # f.seek(指针移动的字节数,模式控制): 控制文件指针的移动# 模式控制 ...

  8. tcpdump使用示例

    前言 这段时间一直在研究kubernetes当中的网络, 包括通过keepalived来实现VIP的高可用时常常不得不排查一些网络方面的问题, 在这里顺道梳理一下tcpdump的使用姿势, 若有写的不 ...

  9. Laravel Cache 缓存钉钉微应用的 Access Token

    钉钉微应用的 Access token 如何获取? Access_Token 是企业访问钉钉开放平台全局接口的唯一凭证,即调用接口时需携带Access_Token.从接口列表看,所有接口都需要携带 a ...

  10. python接口自动化测试十一:传参数:data与json

    # 传json参数 import requests url = 'xxxxxxxx' body = {     'xxx': 'xxx',     'xxx': 'xxx' } # body是json ...