【BZOJ】3143: [Hnoi2013]游走
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3143
显然如果一条边期望被走过的次数越多,我们就应该给它的编号越小。
所以问题变为如何求每一条边被经过的期望次数。
考虑直接求边的期望有点困难。
设:${g[i]}$表示经过第$i$条边的期望次数,${f[i]}$表示经过第$i$个点的期望次数,${du[i]}$表示第$i$个点的度数。
对于一条边$i$,假设这条边的两段的点分别为${x,y}$,则${g[i]=\frac{f[x]}{du[x]}*\frac{f[y]}{du[y]}}$
所以问题变为如何求每一个点被经过的期望次数
设$e[x][y]$表示点$x,y$之间有连边。这就很裸了,${f[i]=\sum (\frac{f[x]}{du[x]}\left [ e[i][x]=1 \right ] )}$,其中$n$号点只能走进去而不能出来,所以忽略不管,$1$号点应当强制$+1$(因为一开始就从$1$号点开始)
这样就得到了一个$n-1$个未知数和$n-1$个式子的方程组,高斯消元求得每个未知数的解(即${f[i]}$),然后求出${g[i]}$,然后从大到小排序。
$${\sum _{i=1}^{m}g[i]*i}$$
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 510
#define llg long long
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
llg n,m;
double a[maxn][maxn],du[maxn],f[maxn],g[maxn*maxn]; struct Edge{llg x,y;}e[maxn*maxn]; bool cmp(double x,double y){return x>y;} void guass()
{
llg r;
for (llg i=;i<=n;i++)
{
r=i;
for (llg j=i+;j<=n;j++) if (fabs(a[j][i])>fabs(a[r][i])) r=j;
if (r!=i) for (llg j=;j<=n+;j++) swap(a[r][j],a[i][j]); for (llg k=i+;k<=n;k++)
{
double F=a[k][i]/a[i][i];
for (llg j=i;j<=n+;j++) a[k][j]-=F*a[i][j];
}
} for (llg i=n;i>=;i--)
{
for (llg j=i+;j<=n;j++) a[i][n+]-=f[j]*a[i][j];
f[i]=a[i][n+]/a[i][i];
}
} void init()
{
llg x,y;
cin>>n>>m;
for (llg i=;i<=m;i++)
{
scanf("%lld%lld",&e[i].x,&e[i].y);
du[e[i].x]++,du[e[i].y]++;
}
for (llg i=;i<=m;i++)
{
x=e[i].x,y=e[i].y;
if (y!=n) {a[x][y]=1.00/du[y];}
if (x!=n) {a[y][x]=1.00/du[x];}
}
for (llg i=;i<n;i++) a[i][i]=-;
a[][n]=-;
n--;
} int main()
{
yyj("walk");
init();
guass();
for (llg i=;i<=m;i++) g[i]=f[e[i].x]/du[e[i].x]+f[e[i].y]/du[e[i].y];
double ans=;
sort(g+,g+m+,cmp);
for (llg i=;i<=m;i++) ans+=(double)i*g[i];
printf("%.3lf",ans);
return ;
}
【BZOJ】3143: [Hnoi2013]游走的更多相关文章
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- bzoj 3143: [Hnoi2013]游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...
- [BZOJ 3143][HNOI2013]游走(数学期望)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...
- ●BZOJ 3143 [Hnoi2013]游走
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3143题解: 期望dp,高斯消元 首先有这样一种贪心分配边的编号的方案:(然后我没想到,233 ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
随机推荐
- 查询在某一个时间段内的sql(oracel)
( to_char(t.TUIJIAN_TIME, 'yyyy-MM-dd') between #{begin_time} and #{end_time} )
- how to backup your system of Autel MS908 Pro
how to backup your system of Autel Scan Tool Autel MS908 Pro: Connect the tablet to a PC desktop or ...
- JavaScript笔记 #05# 用Regex辅助生成文章目录
PS. 用来生成个人笔记的目录 1.输入:html文本 <h2>Notes</h2> <p>1.小标题1.正文正文正文</p> <div clas ...
- django 上传文件及反馈信息
from django.shortcuts import render,HttpResponse from django.views import View from Fiskars.models i ...
- Prometheus监控学习笔记之Prometheus的架构及持久化
0x00 Prometheus是什么 Prometheus是一个开源的系统监控和报警工具,特点是 多维数据模型(时序列数据由metric名和一组key/value组成) 在多维度上灵活的查询语言(Pr ...
- Prometheus监控学习笔记之360基于Prometheus的在线服务监控实践
0x00 初衷 最近参与的几个项目,无一例外对监控都有极强的要求,需要对项目中各组件进行详细监控,如服务端API的请求次数.响应时间.到达率.接口错误率.分布式存储中的集群IOPS.节点在线情况.偏移 ...
- P3302 [SDOI2013]森林(主席树+启发式合并)
P3302 [SDOI2013]森林 主席树+启发式合并 (我以前的主席树板子是错的.......坑了我老久TAT) 第k小问题显然是主席树. 我们对每个点维护一棵包含其子树所有节点的主席树 询问(x ...
- RequestBody使用
@RequestBody主要用来接收前端传递给后端的json字符串中的数据的(请求体中的数据的); GET方式无请求体,所以使用@RequestBody接收数据时,前端不能使用GET方式提交数据,而是 ...
- Pycharm创建Django项目并访问Django
Pycharm创建Django项目并访问Django 一.Django插件 如果没有Django插件,需要先安装Django插件. 1,首先点击Default Settings,打开设置页面: 2,打 ...
- rsync命令解析
!rsync同步模式sync在进行同步或备份时,使用远程shell,或TCP连接远程daemon,有两种途经连接远程主机.shell模式,不需要使用配置文件,也不需要启动远端rsync.远程传输时一般 ...