题目重点是每次不能跳过两个棋子

即对于每一个棋子的状态(a,b,c) (a<b<c)

最多有两种移动的方式

1.中间往两边跳 (a,b,c)-->(2b-a,a,c)或(a,c,2b-c)

2.a或c往中间跳 当然要满足不跳过两个棋子

b-a<c-b a可以跳过b (a,b,c)-->(b,2b-a,c)

c-b<b-a c可以跳过b (a,b,c)-->(a,2b-c,b)

当然当c-b=b-a时就不能再往中间跳了

此时可以想到对于一个状态(a,b,c)如果一直往中间跳 最终的状态一定是一定的

于是可以把这个最终的状态看做是根节点 中间向左向右跳的状态分别是左右节点

这样就是一棵二叉树了,而询问两个状态能否相互跳到就是树上距离了

于是回顾lca求树上距离的过程,我们首先要确定一个状态的k层祖先的状态是什么

如果暴力跳的话就会超时,所以我们想一种特殊的情况

(1,100000000,100000001) 显然暴力跳会一直跳1的长度是不行的

但我们看这时b-a很大但c-b很小就意味着接下来会很多次都是c往b跳

能跳几次呢?因为棋子实际上没有区别 假如c跳过b 那么实际上就是c和b一起向左平移了c-b的距离

所以c往b跳的次数就是(b-a)/(c-b)

这样对于本题就可以达到取模gcd的速度快速求出一个状态的k层祖先状态

这样用lca的手法先让两点到达同一高度,再二分一个距离k,如果两种状态的k层祖先一直 则将k缩小,反之增大求出他们的最近公共祖先

#include<bits/stdc++.h>
using namespace std;
int ans,a,b,c,x,y,z,x1,yy1,z1,a1,b1,c1,t1,t2;
int read()
{
int f=1,x=0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(x=x*10+ch-48,ch=getchar(),ch>='0'&&ch<='9');
return x*f;
}
void SWAP(int &a,int &b,int &c){if(a>b){swap(a,b);if(a>c)swap(a,c);}if(b>c)swap(b,c);}
void back(int &a,int &b,int &c,int k)//将状态a,b,c回到k步前的状态 即它的k层祖先
{
int A=b-a,B=c-b;
if(A<B)
{
int t=B/A;if(B%A==0)t--;
if(t>=k){a=a+k*A;b=b+k*A;}
else {a=a+t*A;b=b+t*A;back(a,b,c,k-t);}
}else
{
int t=A/B;if(A%B==0)t--;
if(t>=k){c=c-k*B;b=b-k*B;}
else {c=c-t*B;b=b-t*B;back(a,b,c,k-t);}
}
}
int getfa(int &a,int &b,int &c)//寻找状态a,b,c的根节点
{
int A=b-a,B=c-b;
if(A==B)return 0;
if(A<B)
{
int t=B/A;if(B%A==0)t--;
a=a+t*A;b=b+t*A;
return t+getfa(a,b,c);
}else
{
int t=A/B;if(A%B==0)t--;
c=c-t*B;b=b-t*B;
return t+getfa(a,b,c);
}
}
int comp(int a,int b,int c,int x,int y,int z){if(a==x&&b==y&&c==z)return 1;else return 0;}
int main()
{
a=read();b=read();c=read();
x=read();y=read();z=read();
SWAP(a,b,c);SWAP(x,y,z);
x1=x;yy1=y;z1=z;a1=a;b1=b;c1=c;
t1=getfa(x1,yy1,z1);t2=getfa(a1,b1,c1);
if(!comp(x1,yy1,z1,a1,b1,c1)){puts("NO");return 0;}
if(t1<t2) back(a,b,c,t2-t1);else back(x,y,z,t1-t2);
int l=0,r=min(t1,t2);
while(l<=r)
{
int mid=(l+r)>>1;
x1=x;yy1=y;z1=z;a1=a;b1=b;c1=c;
back(x1,yy1,z1,mid);back(a1,b1,c1,mid);
if(comp(a1,b1,c1,x1,yy1,z1)) ans=mid,r=mid-1;else l=mid+1;
}
puts("YES");
printf("%d",2*ans+max(t2,t1)-min(t2,t1));
return 0;
}
/*
(a,b,c) if b-a<c-b --> (b,2b-a,c)
if c-b<b-a --> (a,2b-c,b) */

[luogu]P1852跳跳棋的更多相关文章

  1. P1852 跳跳棋 [LCA思想+二分答案]

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有\(3\)颗棋子,分别在\(a,b,c\)这三个位置.我们要通过最少的跳动 ...

  2. 【题解】P1852 跳跳棋

    link 题意 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.棋盘上有3颗棋子,分别在 \(a,b,c\) 这三个位置.我们要通过最少的跳动把他们的位置移动成 \(x,y, ...

  3. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

  4. P1852 [国家集训队]跳跳棋

    P1852 [国家集训队]跳跳棋 lca+二分 详细解析见题解 对于每组跳棋,我们可以用一个三元组(x,y,z)表示 我们发现,这个三元组的转移具有唯一性,收束性 也就是说,把每个三元组当成点,以转移 ...

  5. 洛谷 P1852 [国家集训队] 跳跳棋

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...

  6. 【洛谷】1852:[国家集训队]跳跳棋【LCA】【倍增?】

    P1852 [国家集训队]跳跳棋 题目背景 原<奇怪的字符串>请前往 P2543 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个 ...

  7. 【LCA】bzoj 2144:跳跳棋

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 248  Solved: 121[Submit][Status][Discuss] ...

  8. bzoj2144 【国家集训队2011】跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  9. 跳跳棋(9018_1563)(BZOJ_2144)

    题目: Hzwer的跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 某一天,黄金大神和cjy用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.他们要 ...

随机推荐

  1. Linux服务器---流量监控bandwidthd

    Bandwidthd Bandwidthd是一款免费的流量监控软件,它可以用图标的方式展现出网络流量行为,并且可区分出ftp.tcp等各种协议的流量. 1.安装一些依赖软件 [root@localho ...

  2. 你知道CSS实现水平垂直居中的第10种方式吗?

    你知道CSS实现水平垂直居中的第10种方式吗? 仅居中元素定宽高适用: absolute + 负 margin absolute + margin auto absolute + calc 居中元素不 ...

  3. [转载]oracle的加密和解密

    加密函数 create or replace function encrypt_des(p_text varchar2, p_key varchar2) return varchar2 isv_tex ...

  4. json.dumps(),json.loads(),json.dump(),json.load()方法的区别

    1. json.dumps() json.dump()是将字典类型转化成字符串类型. import json dic = {'a':'1111','b':'2222','c':'3333','d':' ...

  5. Python进阶【第五篇】函数式编程及某些特殊函数

    一.函数式编程——Functional Programming 函数式=编程语言定义的函数+数学意义的函数 在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语 ...

  6. javaweb笔记06—(页面跳转及编码格式)

    1.指令:<%@     %>:一个页面可以有多个import, 但是标识本页面为jsp页面的指令只能是一条(建议是一条 ) 2.出错页面:<%@ isError(true)%> ...

  7. ES6知识整理(3)--函数的扩展

    只有整理过的学习才是有效的学习.也就是学习之后要使用和整理成文,才是真正的学到了... 最近上班有点忙的关系,于是文章更新会慢些.只有晚上加完班之后,空余时间才能学习整理.因此完成一篇也可能要几个晚上 ...

  8. oracle parallel_index hint在非分区表的生效

    之前没特别注意,在有些场景下希望使用并行索引扫描的时候,发现parallel_index hint并没有生效,于是抽空看了下文档:The PARALLEL_INDEX hint instructs t ...

  9. oracle No more data to read from socket之ora-07445排查解决

    今天下午,原来一个部门的同事找过来,说有个即将上线的环境偶尔会出现 No more data to read from socket错误,版本是oracle 11.2.0.1,如下: 经查,这个问题原 ...

  10. mysql优化之使用iotop+pt-ioprofile定位具体top io文件

    今天,将一个环境切换成行情优化后的版本后,发现io等待还是挺高,这还是第一次出现的.其他很多套环境都没有这个问题了,故iotop看了下,基本可以确定为是mysql进程的问题,如下: 但是iotop只能 ...