1.11

求f(n)=f(n-1)+2*f(n-2)+3*f(n-3)

 #lang racket
(define (fff n)
(define (fff-iter a b c n)
(if (= n 0)
a
(fff-iter b c (+ (* 3 a)(* 2 b) c) (- n 1))))
(fff-iter 0 1 2 n))

递归版本

#lang racket
(define (fff n)
(if (< n 3)
n
(+ (fff (- n 1))
(* 2 (fff (- n 2)))
(* 3 (fff (- n 3))))))

1.12 帕斯卡三角

#lang racket
(define (pascal row col)
(cond ((< row col) (error "error"))
((or (= col 0) (= col row)) 1)
(else (+ (pascal (- row 1) col)
(pascal (- row 1) (- col 1))))))

sicp 习题的更多相关文章

  1. SICP 习题 (1.7) 解题总结

    SICP 习题 1.7 是对正文1.1.7节中的牛顿法求平方根的改进,改进部分是good-enough?过程. 原来的good-enough?是判断x和guess平方的差值是否小于0.001,这个过程 ...

  2. SICP 习题 (1.14)解题总结

    SICP 习题 1.14要求计算出过程count-change的增长阶.count-change是书中1.2.2节讲解的用于计算零钱找换方案的过程. 要解答习题1.14,首先你需要理解count-ch ...

  3. SICP 习题 (1.8) 解题总结

    SICP 习题1.8需要我们做的是按照牛顿法求平方根的方法做一个求立方根的过程. 所以说书中讲牛顿法求平方根的内容还是要好好理解,不然后面这几道题做起来就比较困难. 反过来,如果理解了牛顿法求平方根的 ...

  4. SICP 习题 (1.9) 解题总结

    SICP 习题 1.9 开始针对“迭代计算过程”和“递归计算过程”,有关迭代计算过程和递归计算过程的内容在书中的1.2.1节有详细讨论,要完成习题1.9,必须完全吃透1.2.1节的内容,不然的话,即使 ...

  5. SICP 习题 (1.10)解题总结

    SICP 习题 1.10 讲的是一个叫“Akermann函数”的东西,去百度查可以查到对应的中文翻译,叫“阿克曼函数”. 就像前面的解题总结中提到的,我是一个数学恐惧者,看着稍微复杂一点的什么函数我就 ...

  6. SICP 习题 (1.13) 解题总结

    SICP习题1.13要求证明Fib(n)是最接近φn/√5 的整数,其中φ=(1+√5)/2 .题目还有一个提示,提示解题者利用归纳法和斐波那契数的定义证明Fib(n)=(φn - ψn) / √5 ...

  7. SICP 习题 (2.7) 解题总结 : 定义区间数据结构

    SICP 习题 2.7 開始属于扩展练习,能够考虑不做,对后面的学习没什么影响.只是,假设上面的使用过程表示序对,还有丘奇计数你都能够理解的话,完毕这些扩展练习事实上没什么问题. 习题2.7是要求我们 ...

  8. SICP 习题 (2.6) 解题总结:丘奇计数

    SICP 习题 2.6 讲的是丘奇计数,是习题2.4 和 2.5的延续. 这里大师们想提醒我们思考的是"数"究竟是什么,在计算机系统里能够怎样实现"数".准备好 ...

  9. SICP 习题 (1.37)解题总结

    SICP 习题 1.37是一条非常长的题目,主要讲的是无穷连分式.无穷连分式对我来说又是一个陌生的概念,于是又去百度了一番,发现无穷连分式也是一个非常有意思的话题,涉及到无理数的表达.只是我建议大家还 ...

  10. SICP 习题 (1.43)解题总结

    SICP 习题 1.43 是前面两道题的延续,习题要求我们定义一个过程(repeat f n) .当中f是一个单參数过程.题目要求我们通过repeat过程将过程f调用n次,注意是嵌套调用n次,不是连续 ...

随机推荐

  1. 推荐系统之协同过滤的原理及C++实现

    1.引言 假如你经营着一家网店,里面卖各种商品(Items),有很多用户在你的店里面买过东西,并对买过的Items进行了评分,我们称之为历史信息,现在为了提高销售量,必须主动向用户推销产品,所以关键是 ...

  2. 【转】Python中的eval()、exec()及其相关函数

    [转]Python中的eval().exec()及其相关函数 刚好前些天有人提到eval()与exec()这两个函数,所以就翻了下Python的文档.这里就来简单说一下这两个函数以及与它们相关的几个函 ...

  3. mysql系列二、mysql内部执行过程

    向MySQL发送一个请求的时候,MySQL到底做了什么 客户端发送一条查询给服务器. 服务器先检查查询缓存,如果命中了缓存,则立刻返回存储在缓存中的结果.否则进入下一阶段. 服务器端进行SQL解析.预 ...

  4. centos6.5报错:checking filesystems failed问题处理

    centos系统重启报错:checking filesystems failed checking filesystems /dev/mapper/vg_0-root: 搜了下可能是文件系统损坏 根据 ...

  5. Day6------------磁盘用满的两种情况

    1.文件包含元数据和写入的内容 元数据:存在硬盘中的inode ls -i /etc/passwd.bak 查看inode df -i 查看inode 2.磁盘用满的两种情况 1).内容太多 2).空 ...

  6. 【ES】学习3-请求体查询

    1.空查询 GET /index_2014*/type1,type2/_search {} GET /_search { , } 2.查询表达式 DSL只需将查询语句传递给 query 参数 GET ...

  7. python接口自动化测试二十七:加密与解密MD5、base64

    # MD5加密 # 由于MD5模块在python3中被移除# 在python3中使用hashlib模块进行md5操作 import hashlib def MD5(str): # 创建md5对象 hl ...

  8. java web项目为什么我们要放弃jsp?

    前戏: 以前的项目大多数都是java程序猿又当爹又当妈,又搞前端(ajax/jquery/js/html/css等等),又搞后端(java/mysql/Oracle等等). 随着时代的发展,渐渐的许多 ...

  9. linux 图形化与命令模式切换

    vim编辑/etc/inittab 文件如图: 找到红框里的一行.修改数字    3.表示命令模式     5表示图形模式!

  10. sql 根据日期模糊查询&SQL Server dateTime类型 模糊查询

    曾经遇到这样的情况,在数据库的Meeting表中有PublishTime (DateTime,8)字段,用来存储一个开会时间,在存入时由于要指明开会具体时间,故格式为yyyy-mm-dd hh:mm: ...