Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each
ditch can transport per minute but also the exact layout of the ditches,
which feed out of the pond and into each other and stream in a
potentially complex network.

Given all this information, determine the maximum rate at
which water can be transported out of the pond and into the stream. For
any given ditch, water flows in only one direction, but there might be a
way that water can flow in a circle.

Input

The input includes several cases. For each case,
the first line contains two space-separated integers, N (0 <= N <=
200) and M (2 <= M <= 200). N is the number of ditches that
Farmer John has dug. M is the number of intersections points for those
ditches. Intersection 1 is the pond. Intersection point M is the stream.
Each of the following N lines contains three integers, Si, Ei, and Ci.
Si and Ei (1 <= Si, Ei <= M) designate the intersections between
which this ditch flows. Water will flow through this ditch from Si to
Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water
will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

题意 : 给你一个源点和一个汇点,再给你一些中间边,同时给你他们边上的容量,求从源点到汇点最大流量是多少?
思路分析 :网络流板子题
代码示例 :
using namespace std;
#define ll long long
const int maxn = 205;
const int mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f; int n, m;
struct node
{
int next, v, flow; // flow可以理解为容量限制
}e[maxn<<1];
int cnt;
int head[maxn];
int aim; // 目标点
int deep[maxn]; // 分层图的深度 void addedge(int u, int v, int cap){
e[cnt].v = v;
e[cnt].flow = cap;
e[cnt].next = head[u];
head[u] = cnt++;
} int que[10000]; bool bfs(int s, int t){
memset(deep, 0, sizeof(deep));
deep[s] = 1; que[0] = s; int head1 = 0, tail1 = 1;
while(head1 < tail1){
int u = que[head1++];
for(int i = head[u]; i != -1; i = e[i].next){
int v = e[i].v;
if (!deep[v] && e[i].flow){ // 判断当前的边如果还可以流
deep[v] = deep[u]+1;
que[tail1++] = v;
}
}
}
return deep[t];
} int dfs(int u, int f1){
if (u == aim || f1 == 0) return f1; // 这个优化非常的棒 int f = 0;
for(int i = head[u]; i != -1; i = e[i].next){ // 多路增广,利用dfs的特性
int v = e[i].v;
if (e[i].flow && deep[v] == deep[u]+1){
int x = dfs(e[i].v, min(f1, e[i].flow));
e[i].flow -= x; e[i^1].flow += x;
f1 -= x; f += x;
       if (f1 == 0) return f; // !!!
}
}
if (!f) deep[u] = -2; // 炸点优化,若当前点的流量为 0,则在此次中没有必要再去访问该点了
return f;
} int maxflow(int s, int t){
aim = t; int ret = 0;
cnt = 0;
while(bfs(s, t)){
ret += dfs(s, inf);
}
return ret;
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int u, v, w; while(~scanf("%d%d", &n, &m)){
cnt = 0;
memset(head, -1, sizeof(head));
for(int i = 1; i <= n; i++){
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w);
addedge(v, u, 0); // 反向边的建立,并赋值 0
}
printf("%d\n", maxflow(1, m));
}
return 0;
}

最大流入门题目 - poj 1273的更多相关文章

  1. UVA 820 --- POJ 1273 最大流

    找了好久这两个的区别...UVA820 WA了 好多次.不过以后就做模板了,可以求任意两点之间的最大流. UVA 是无向图,因此可能有重边,POJ 1273是有向图,而且是单源点求最大流,因此改模板的 ...

  2. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  3. poj 1273 最大流

    题目链接:http://poj.org/problem?id=1273 a.EK算法:(Edmond-Karp): 用BFS不断找增广路径,当找不到增广路径时当前流量即为最大流. b.dinic算法: ...

  4. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  5. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  6. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  7. POJ 1273 网络流(最大流)模板

    http://poj.org/problem?id=1273 这道题很值得反思,弄了一下午,交上去先是一直编译错误,而在本地运行没有问题, 原因可能是oj的编译器版本老旧不支持这样的写法 G[from ...

  8. (网络流 模板 Dinic) Drainage Ditches --POJ --1273

    链接: http://poj.org/problem?id=1273 代码: //Dinic #include<stdio.h> #include<string.h> #inc ...

  9. (网络流 模板 Edmonds-Karp)Drainage Ditches --POJ --1273

    链接: http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total ...

随机推荐

  1. vue用法父组件调用子组件方法--->$refs

    vue下载excel模板(放入弹框独立出来)后再导入表格 子组件 <el-dialog title="导入" :visible.sync="dialogVisibl ...

  2. Spring Boot Thymeleaf 使用详解

    在上篇文章Spring Boot (二):Web 综合开发中简单介绍了一下 Thymeleaf,这篇文章将更加全面详细的介绍 Thymeleaf 的使用.Thymeleaf 是新一代的模板引擎,在 S ...

  3. P1070 东风谷早苗

    题目描述 在幻想乡,东风谷早苗是以高达控闻名的高中生宅巫女.某一天,早苗终于入手了最新款的钢达姆模型.作为最新的钢达姆,当然有了与以往不同的功能了,那就是它能够自动行走,厉害吧(好吧,我自重).早苗的 ...

  4. Codeforces Round #561 (Div. 2)

    C. A Tale of Two Lands 题意: 给出 n 个数,问有多少点对(x,y)满足 |x-y| ≤ |x|,|y| ≤ |x+y|: (x,y) 和 (y,x) 表示一种答案: 题解: ...

  5. dijkstra堆优化(multiset实现->大大减小代码量)

    例题: Time Limit: 1 second Memory Limit: 128 MB [问题描述] 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣 ...

  6. jquery核心基础

    jquery对对象的操作:   检查对象类型: 老式的javascript使用typeOf()操作符,但他是不符合逻辑的,在某些情况下,typeOf()返回的不是一个正确的值,或者返回一个出乎意料的值 ...

  7. Comet OJ - Contest #5

    Comet OJ - Contest #5 总有一天,我会拿掉给\(dyj\)的小裙子的. A 显然 \(ans = min(cnt_1/3,cnt_4/2,cnt5)\) B 我们可以感性理解一下, ...

  8. Codeforces Round #524 (Div. 2) codeforces 1080A~1080F

    目录 codeforces1080A codeforces 1080B codeforces 1080C codeforces 1080D codeforces 1080E codeforces 10 ...

  9. STM32的RTC晶振不起振的原因及解决方法

    STM32的RTC晶振经常出现不起振的问题,这已经是“业界共识”了.很多人在各种电子论坛上求助类似于“求高手指点!RTC晶振不起振怎么办”的问题,而其答案基本可以概括为“这次高手帮不了你了” 更有阴谋 ...

  10. python监控模块

    pip install psutil 获取内存信息: >>> import psutil >>> mem = psutil.virtual_memory() #获取 ...