HDU6434 I. Count

T次询问,每次询问\(\sum_{i=1}^{n}\sum_{j=1}^{n-1}[gcd(i-j,i+j)=1]\)

\(T\le 1e5, n \le 2e7\)

对原式进行转换,枚举\(i-j\) ,\(i-j\)为\(j\) ,那么可以变换为\(\sum_{i=1}^{n}\sum_{j=1}^{i-1}[gcd(j,2i-j)=1]\)

\(\Rightarrow \sum_{i=1}^{n}\sum_{j=1}^{i-1}[gcd(j,2i)=1]\)

也就是计算\([1,i-1]\)中与\(2i\)互质的数的个数,也即和\(i\)互质的奇数的个数 = $\frac{\phi(2i)}{2} $

所以答案就是: \(\sum_{i=1}^{n}\frac{\phi(2i)}{2} 线性筛预处理之后可以O(1)得到答案\)

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 2e7+7;
using LL = int_fast64_t;
int phi[MAXN];
LL sum[MAXN];
void calphi(){
for(int i = 1; i < MAXN; i++) phi[i] = i;
vector<int> prime;
for(int i = 2; i < MAXN; i++){
if(phi[i]==i){
prime.emplace_back(i);
phi[i] = i - 1;
}
for(int j = 0; j < (int)prime.size(); j++){
if(i*prime[j]>=MAXN) break;
phi[prime[j]*i] = phi[prime[j]] * phi[i];
if(i%prime[j]==0){
phi[i*prime[j]] = phi[i] * prime[j];
break;
}
}
}
for(int i = 1; i < MAXN; i++){
if(i&1) sum[i] = sum[i-1] + phi[i] / 2;
else sum[i] = sum[i-1] + phi[i];
}
}
int main(){
calphi();
____();
int T;
for(cin >> T; T; T--){
int n; cin >> n;
cout << sum[n] << endl;
}
return 0;
}

HDU6434 Count【欧拉函数 线性筛】的更多相关文章

  1. 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

    题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...

  2. 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

    向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...

  3. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  4. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  5. 杭电多校第十场 hdu6434 Count 欧拉函数打表 快速打表模板

    Problem I. Count Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Other ...

  6. 【BZOJ2401】陶陶的难题I 欧拉函数+线性筛

    [BZOJ2401]陶陶的难题I 题意:求,n<=1000000,T<=100000 题解:直接做是n*sqrt(n)的,显然会TLE,不过这题a和b都是循环到n,那么就可以进行如下的神奇 ...

  7. 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法

    [欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...

  8. 欧拉函数线性求解以及莫比乌斯反演(Mobius)

    前言 咕咕了好久终于来学习莫反了 要不是不让在机房谁会发现数学一本通上有这么神奇的东西 就是没有性质的证明 然后花了两节数学课证明了一遍 舒服- 前置知识:欧拉函数,二项式定理(组合数) 会欧拉函数的 ...

  9. Bi-shoe and Phi-shoe(欧拉函数/素筛)题解

    Bi-shoe and Phi-shoe Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe ...

随机推荐

  1. js 数组的方法总结

    1.Array.map() 此方法是将数组中的每个元素调用一个提供的函数,结果作为一个新的数组返回,并没有改变原来的数组 let arr = [1, 2, 3, 4, 5]     let newAr ...

  2. 【Java】单例模式(Singleton)

    重新搞一波 复习巩固 简单记录 慕课网 Java工程师 文章目录 单例概述 设计模式 单例模式(Singleton) 参考资料 单例概述 Singleton Pattern 单例模式是Java中最简单 ...

  3. ctfhub技能树—sql注入—Cookie注入

    手注 打开靶机 查看页面信息 查找cookie 测试是否为cookie注入 抓包 尝试注入 成功查询到数据库名 查询表名 查询字段名 查询字段信息 成功拿到flag sqlmap 查询数据库名 pyt ...

  4. pandas DataFrame的新增行列,修改、删除、筛选、判断元素以及转置操作

    1)指定行索引和列索引标签 index 属性可以指定 DataFrame 结构中的索引数组,  columns 属性可以指定包含列名称的行, 而使用 name 属性,通过对一个 DataFrame 实 ...

  5. 如何在K8s,Docker-Compose注入镜像Tag

    最近在做基于容器的CI/CD, 一个朴素的自动部署的思路是: 从Git Repo打出git tag,作为镜像Tag ssh远程登录到部署机器 向部署环境注入镜像Tag,拉取镜像,重新部署 下面分享我是 ...

  6. vue+element-ui:table表格中的slot 、formatter属性

    slot 插槽,table中表示该行内容以自定义方式展示 :formatter 方法,用来格式化内容 Function(row, column, cellValue, index) html < ...

  7. 两种方式,花五分钟就能构建一个 Spring Boot 应用

    前言 Spring Boot 的好处自然不必多说,对于想要从事 Java 工作的朋友们来说,可谓是必学的技能. 在我看来,它的优势就是多快好省. 功能多,很多常用的能力都有集成: 接入快,简单的几行代 ...

  8. Ajax函数的封装

    Ajax函数的封装 function ajax(options) { // 1 创建Ajax对象 let xhr = new XMLHttpRequest(); // 2 告诉Ajax对象要想哪儿发送 ...

  9. CentOS7,非LVM根分区扩容步骤:

    1.查看现有的分区大小 非LVM分区,目前磁盘大小为40G,根分区总容量为40G,(是自定义分区安装的) 2.关机增加磁盘大小至100G 如果你们是vmwaer虚拟软件安装的那如下入扩容: 3.查看磁 ...

  10. 使用Jmeter对SHA1加密接口进行性能测试

    性能测试过程中,有时候会遇到需要对信息头进行加密鉴权,下面我就来介绍如何针对SHA1加密鉴权开发性能测试脚本1.首先了解原理,就是需要对如下三个参数进行SHA1加密,(AppSecret + Nonc ...