BZOJ 1010 玩具装箱toy(斜率优化DP)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010
题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小。
解题思路:我们可以很容易得到O(n^2)的状态转移方程:dp[i]=min{dp[j]+(sum[i]-sum[j]+i-j-1-l)^2}。显然这种写法会超时, 根据状态转移方程的性质,我们可以利用斜率优化,利用队列维护单调性,使得复杂度降为O(n)。
假设存在k<j<i,且j比k优,于是可以写出不等式dp[j]+(sum[i]-sum[j]+i-j-1-l)^2<=dp[k]+(sum[i]-sum[j]+i-j-1-l)^2
设s[j]=sum[j]+j,s[k]=sum[k]+k,C=l+1.
则原式可化为:dp[j]+(s[i]-s[j]-C)^2<=dp[k]+(s[i]-s[k]-C)^2
dp[j]+(s[j]+C)^2-2*s[i]*(s[j]+C)<=dp[k]+(s[k]+C)^2-2*s[i]*(s[k]+C)
(dp[j]+(s[j]+C)^2-dp[k]-(s[k]+C)^2)/(2*s[j]-2*s[k])<=s[i]
设yj=dp[j]+(s[j]+C)^2,yk=dp[k]+(s[k]+C)^2,xj=2*s[j],xk=2*s[k]
令g(k,j)=yj-yk/xj-xk.
当①g(k,j)<=s[i],j比k优,k可抛弃。
②如果g(k,j)>=g(j,i),那么j点便永远不可能成为最优解,可以直接将它踢出我们的最优解集。
1)若g(j,i)<=s[i],那么就是说i点要比j点优,排除j点。
2)如果g(j,i)>s[i],那么j点此时是比i点要更优,但是同时g(k,j)>=g(i,j)>s[i]。这说明还有k点会比j点更优,同样排除j点。
本质:维护一个斜率单调的队列。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N=5e4+; LL l,C;
LL sum[N],dp[N],q[N]; //yj-yk/xj-xk
double Slope(int k,int j){
return double(dp[j]+(sum[j]+C)*(sum[j]+C)-dp[k]-(sum[k]+C)*(sum[k]+C))/(*sum[j]-*sum[k]);
} //dp[i]=min{dp[j]+(sum[i]-sum[j]+i-j-1-l)^2}
LL getDP(int i,int j){
return dp[j]+(sum[i]-sum[j]-C)*(sum[i]-sum[j]-C);
} int main(){
int n;
scanf("%d%lld",&n,&l);
C=l+;
for(int i=;i<=n;i++){
scanf("%lld",&sum[i]);
sum[i]+=sum[i-];
}
for(int i=;i<=n;i++){
sum[i]+=i;
}
dp[]=;
int head=,tail=;
q[tail++]=;
for(int i=;i<=n;i++){
while(head+<tail&&Slope(q[head],q[head+])<=sum[i]){
head++;
}
dp[i]=getDP(i,q[head]);
while(head+<tail&&Slope(q[tail-],i)<=Slope(q[tail-],q[tail-])){
tail--;
}
q[tail++]=i;
}
printf("%lld\n",dp[n]);
return ;
}
BZOJ 1010 玩具装箱toy(斜率优化DP)的更多相关文章
- BZOJ 1010: 玩具装箱toy (斜率优化dp)
		Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ... 
- bzoj 1010 玩具装箱toy    -斜率优化
		P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具 ... 
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
		1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ... 
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
		1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ... 
- 『玩具装箱TOY 斜率优化DP』
		玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ... 
- 【bzoj1010】[HNOI2008]玩具装箱toy  斜率优化dp
		题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ... 
- 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告
		题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ... 
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
		传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ... 
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
		题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ... 
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
		题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ... 
随机推荐
- HUD.2544 最短路 (Dijkstra)
			HUD.2544 最短路 (Dijkstra) 题意分析 1表示起点,n表示起点(或者颠倒过来也可以) 建立无向图 从n或者1跑dij即可. 代码总览 #include <bits/stdc++ ... 
- GCJ2008 APAC local onsites C Millionaire
			自己Blog的第一篇文章,嗯... 接触这道题,是从<挑战程序设计竞赛>这本书看来的,其实头一遍读题解,并没有懂.当然现在已经理解了,想想当初可能是因为考虑两轮的那张概率图的问题.于是决定 ... 
- rn初体验
			react-native 需要的工具 .nodejs .rn cli .xcode and as ---------------- 打开终端,切换到根路径(mac中修改npm的默认安装来源) 一.op ... 
- 题解 【luogu P1541 NOIp提高组2010 乌龟棋】
			题目链接 题解 题意: 有一些格子,每个格子有一定分数. 给你四种卡片,每次可以使用卡片来前进1或2或3或4个格子并拾取格子上的分数 每张卡片有数量限制.求最大分数. 分析 设\(dp[i]\)为第前 ... 
- bzoj 1468 Tree 点分
			Tree Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1972 Solved: 1101[Submit][Status][Discuss] Desc ... 
- [技巧篇]13.从今天开始做一个有理想的人,放弃alter的调试,拥抱console.log
			在js前端开发时,为了调试经常会加上 console.log.但是在有的浏览器(比如IE)中会报错,怎么办呢?好像10之后也开始支持了!如果以防方一,可以使用如下方式 在js文件最前面添加如下js代码 ... 
- 【设计模式】 模式PK:装饰模式VS适配器模式
			1.概述 装饰模式和适配器模式在通用类图上没有太多的相似点,差别比较大,但是它们的功能有相似的地方:都是包装作用,都是通过委托方式实现其功能.不同点是:装饰模式包装的是自己的兄弟类,隶属于同一个家族( ... 
- 【bzoj1594-猜数游戏】线段树
			题解: 矛盾只有两种情况: 一.先前确定了x在区间(l,r),但是现在发现x在区间(l1,r1),并且两个区间不相交. 二.一个区间的最小值是x,这个区间中有一个子区间的最小值比x更小. 首先可以明确 ... 
- mysql 索引最左原则原理
			索引本质是一棵B+Tree,联合索引(col1, col2,col3)也是. 其非叶子节点存储的是第一个关键字的索引,而叶节点存储的则是三个关键字col1.col2.col3三个关键字的数据,且按照c ... 
- java 深度拷贝 复制 深度复制
			1.深度拷贝.复制代码实现 最近需要用到比较两个对象属性的变化,其中一个是oldObj,另外一个是newObj,oldObj是newObj的前一个状态,所以需要在newObj的某个状态时,复制一个一样 ... 
