A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

思路1:

一上去就觉得是简单题:

如果当前格位于第m行或第n列,则只有一种路径;

否则当前格路径数等于“右格路径数”+“下格路径数”;

代码(未AC):

 class Solution {
public:
int uniquePaths(int m, int n) {
if (m == || n == )
return ; return uniquePaths(m - , n) + uniquePaths(m, n - );
}
};

结果提示超时了。

思路2:

考虑超时原因很可能是使用了函数递归,为避免使用递归,新建一个m*n的矩阵空间用于保存每个点计算的路径数。用新建空间保存结果,代替递归。

代码(AC):

 class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > grid(m, vector<int>(n, ));
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
grid[i][j] = grid[i-][j] + grid[i][j-];
}
} return grid[m-][n-];
}
};

思路3:

上述代码时间复杂度o(m*n),空间复杂度o(m*n),通过观察路径数量规律,还可以减少空间复杂度为o(n)。

已知grid[i][j] = grid[i-1][j] + grid[i][j-1];

进一步将后一项grid[i][j-1]替换为grid[i-1][j-1] + grid[i][j-2];

不断查分后一项,最终grid[i][j] = grid[i-1][j] + grid[i-1][j-1] + grid[i-1][j-2] + ... + grid[i-1][1] + grid[i][0];

又因为grid[i][0] = grid[i-1][0] = 1;

所以grid[i][j] 就等于第i-1行,从0到j所有元素之和;

得到了这个规律,我们只需要一个长度为n的数组col,通过第0行计算第1行,并不断迭代,最终得到第m行格子存在的路径数,此时col[n-1]即为所求.

 class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> col(n, );
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
col[j] = col[j-] + col[j];
}
} return col[n-];
}
};

思路4:

可以通过分析排列组合暴力求解:

从格子起始,一共需要移动n+m-2步,可以到达终点。

这n+m-2步中,有m-1步需要向下移动。

问题转化为,从n+m-2步中,选择m-1步向下移动,有多少种选择方法。

因此通过计算Combination(n+m-2, m-1)即可求得答案.

代码(超时):

 class Solution {
public:
int uniquePaths(int m, int n) {
long long dividend = ;
long long divisor = ;
for (int i = ; i <= m - ; ++i) {
dividend *= i + n - ;
divisor *= i;
} return int(dividend / divisor);
}
};

代码超时,未AC,正要放弃,看了讨论区的代码..原来用浮点数直接除,结果是正确的;

即(代码AC):

 class Solution {
public:
int uniquePaths(int m, int n) {
double res = ;
for (int i = ; i <= m - ; ++i) {
res = res * (i + n - ) / i;
} return int(res);
}
};

【Leetcode】【Medium】Unique Paths的更多相关文章

  1. 【LeetCode题意分析&解答】40. Combination Sum II

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  2. 【LeetCode题意分析&解答】37. Sudoku Solver

    Write a program to solve a Sudoku puzzle by filling the empty cells. Empty cells are indicated by th ...

  3. 【LeetCode题意分析&解答】35. Search Insert Position

    Given a sorted array and a target value, return the index if the target is found. If not, return the ...

  4. 【LeetCode每天一题】Unique Paths(唯一的路径数)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).The ...

  5. 【leetcode刷题笔记】Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  6. ACM金牌选手整理的【LeetCode刷题顺序】

    算法和数据结构知识点图 首先,了解算法和数据结构有哪些知识点,在后面的学习中有 大局观,对学习和刷题十分有帮助. 下面是我花了一天时间花的算法和数据结构的知识结构,大家可以看看. 后面是为大家 精心挑 ...

  7. &lt;LeetCode OJ&gt; 62. / 63. Unique Paths(I / II)

    62. Unique Paths My Submissions Question Total Accepted: 75227 Total Submissions: 214539 Difficulty: ...

  8. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  9. 【leetcode刷题笔记】Unique Binary Search Trees II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  10. 【leetcode刷题笔记】Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

随机推荐

  1. APP开发的三种技术对比

    目前来说主流的App开发方式有三种:Native App .Web App.Hybird App.下面我们来分析一下这三种App开发方式的优劣对比: 一 :Native App 即 原生App开发 优 ...

  2. Netty构建Http服务器

    Netty 是一个基于 JAVA NIO 类库的异步通信框架,它的架构特点是:异步非阻塞.基于事件驱动.高性能.高可靠性和高可定制性.换句话说,Netty是一个NIO框架,使用它可以简单快速地开发网络 ...

  3. JNI注册调用完整过程-安卓4.4

    在Android系统中,JNI方法是以C/C++语言来实现的,然后编译在一个so文件里面,以我之前的例子为例Android Studio使用JNI,调用之前要加载到当前应用程序的进程的地址空间中: s ...

  4. python中lambda,map,reduce,filter,zip函数

    函数式编程 函数式编程(Functional Programming)或者函数程序设计,又称泛函编程,是一种编程范型,它将计算机运算视为数学上的函数计算,并且避免使用程序状态以及易变对象.简单来讲,函 ...

  5. [PY3]——创建多值映射字典?/defaultdict默认字典/setdefault()

    Defaultdict 默认字典 collections 模块中的 defaultdict(默认字典),可以用来构造“一个键映射多个值”这样的字典 如果你想保持元素的插入顺序就应该使用list, 如果 ...

  6. php操作Excel

    php操作Excel 1.new PHPExcel对象$objPHPExcel = new PHPExcel(); 2表的初始化设置$objPHPExcel->getProperties()-& ...

  7. SQL 文件以及文件组

    1.SQL Server根据分区表名查找所在的文件及文件组实现脚本 --SQL Server根据分区表名查找所在的文件及文件组实现脚本 SELECT fg.name AS FileGroupName ...

  8. 转发与重定向的区别(forward与redirect的区别)

    转发:服务器接收到客户端的请求后,在服务器内部传递的过程.最后回复结果给客户端. 重定向:服务器接收到客户端的请求后,回复一个新url给客户端,客户端跳转新url.

  9. spring整合springmvc和mybatis

    1.spring 1.1 jar包 1.2 spring基本配置,包扫描注解 <!-- 自动扫描 --> <context:component-scan base-package=& ...

  10. 关于eclipse的编码注释等Code Template设置

    啥也不说直接放东西: 首先进入eclipse的preferences里的java 点击Insert variable可以自己设置需要的 1. 设置Files:点击edit, /** * <p&g ...