Hoeffding inequality
Hoeffding公式为
\epsilon]\leq{2e^{-2\epsilon^2N}}">
如果把Training error和Test error分别看成和
的话,Hoeffding告诉我们,取样出来的v和总的u大部分是比较接近的,很小的概率是差很远的,即Ein和Eout差很远,这种情况称为Bad sample.
本来只有一个coin,丢5次,5次head的概率就是1/32。现在有150个coin,可以选择出现5次的那个coin,这时概率会大大增加,变成了1-(31/32)^150 = 99%。
现在的问题是,Algorithm要从H set中选择一个h,而不是force to pick this h。要做到给不同的data,通过A可以得到不同的h,即不同的分界线。但是现在如果只有一个h,则不是learning的过程。但是可以去verify这个h好不好,就看这个h的Ein(h)小不小了。
如果现在有multiple h,对应前面多个coin,其中有一个h在sample上全对,即这个coin5次都是head,说明这个h就很好吗?NO!!其实对于150个硬币,都是一样的,不存在好与坏。出现5次head也只是概率问题。假设我们选择了这块出现5次head的硬币,如果继续往下投,搞不好就不会出现这么多次head了。对应到h上,如果选择一个在sample上表现很好的h,即Ein(h)很小,但是把这个h放到out-of-sample里去,可能表现就会很差了(overfitting)。
我们可能有很多组的training set,这些training set在一个特定的h上表现不一,有的很好,有的则一般,但是这个h在out-of-sample上的表现,有可能和它在in-sample上的表现接近,也可能差很远。如果Ein和Eout差很多的话,可能是Ein很小,但是Eout很大,则这组产生这样的Ein的training set是一个Bad sample. Hoeffding保证的是这种情况的概率很小。
现在假设Hset里有M个h。各种数据集在h上的表现如下

D1在h1上产生很小的Ein,但是h1的Eout很大,则D1对于h1来所就是Bad data. 然而D1126就不是一个Bad data,对于Hset里面的任意一个h,Ein(h)都接近Eout(h)。
对于一个Bad data,它使得Ein far away from Eout的概率是:

但是我们还是可以在不知道Eout(h),同时也不知道f以及D的分布P的情况下,找到概率的upper bound,这个概率比较小,即Ein(g)=Eout(g) is PAC。(g就是由Algorithm选择产生Ein最小的那个h)。
结论

Hoeffding inequality的更多相关文章
- 机器学习(4)Hoeffding Inequality--界定概率边界
问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications
https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf [大数据-通过随机过程降维 ] When dealing with ...
- Hoeffding连接到机器学习
统计学场景: 一个罐子中有红球和绿球,红球比例$v$未知,数量未知,如何得到红球比例?方法---随机抽样N个球,在其中红球占比为$u$ 由hoeffding可以知道:$P(|u-v|>\epsi ...
- MM bound 与 Jensen's inequality
MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...
- Rearrangement inequality
摘抄自: https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof In mathematics, the rearrangement ...
随机推荐
- POJ - 3662 Telephone Lines (Dijkstra+二分)
题意:一张带权无向图中,有K条边可以免费修建.现在要修建一条从点1到点N的路,费用是除掉免费的K条边外,权值最大的那条边的值,求最小花费. 分析:假设存在一个临界值X,小于X的边全部免费,那么此时由大 ...
- 使用 getopt 处理命令行长参数
getopt命令并不是bash的内建命令,它是由util-linux包提供的外部命令. getopt 与 getopts 的区别 getopts 是 shell 内建命令, getopt 是一个独立外 ...
- 左连接、右连接、内连接和where
首先可以看下w3school写的关于join的介绍: http://www.w3school.com.cn/sql/sql_join.asp on是关联条件,where是筛选条件 数据库在通过连接两张 ...
- @RequestBody和@ResponseBody的使用情形以及RestTemplate的http报文转换
@RequestBody和@ResponseBody两个注解,分别完成请求报文到对象和对象到响应报文的转换. @RequestBody 1.@requestBody注解常用来处理content-typ ...
- 【Flask】Flask Cookie操作
### 什么是cookie:在网站中,http请求是无状态的.也就是说即使第一次和服务器连接后并且登录成功后,第二次请求服务器依然不能知道当前请求是哪个用户.cookie的出现就是为了解决这个问题,第 ...
- jQuery UI 自定义样式的日历控件
在线演示 本地下载
- 0927—MySQL常用语句集合
一.连接MySQL 格式: mysql -h 主机地址 -u 用户名 -p 用户密码 1.例1:连接到本机上的MYSQL. 首先在打开DOS窗口,然后进入目录 mysql bin,再键入命令mysql ...
- Luogu-5004 专心OI-跳房子(矩阵快速幂)
Luogu-5004 专心OI-跳房子(矩阵快速幂) 题目链接 题解: 先考虑最朴素的dp 设\(f[i][0/1]\)表示第\(i\)个位置跳/不跳的方案数,则: \[ \begin{cases} ...
- SMM+maven下的log4j配置打印sql
1加入依赖包 <!--LOG4日志 start --> <dependency> <groupId>org.slf4j</groupId> <ar ...
- Action<T>和Func<T>
Action<T>和Func<T>都是泛型委托. Action<T>表示委托可以引用一个viod返回类型的方法,至于方法是带几个参数,什么类型的参数,由后面的泛型决 ...