论文笔记 - Active Learning by Acquiring Contrastive Examples
Motivation
最常用来在 Active Learning 中作为样本检索的两个指标分别是:
- 基于不确定性(给模型上难度);
- 基于多样性(扩大模型的推理空间)。
指标一可能会导致总是选到不提供有效信息的重复数据(例如模棱两可的、毫无价值的样本);而指标二会导致选择到的样本虽然具有多样性,但是太过于简单(你以为是选择个对于模型来说很陌生的样本,但模型说这种难度早就掌握了),不能有效增强模型能力。
Analysis
某些样本在模型特征空间中距离很近,但是模型推理的似然概率却差异很大,称为对比样本(样本距离很近,但分类的结果却不同,那么决策边界就在其中!作者认为这种样本很重要)。


在特征空间中的 Embedding 很相近,但是推理的结果差异老大了。
Algorithm

对于每个样本点,利用 KNN 选择 它的最临近的 k 个样本,计算被选择的 k 个样本的似然概率,与最开始的样本求 KL 散度后平均,作为 这个样本点的 CAL 得分,CAL 越高,证明自己越特殊(身边的邻居跟自己的分类结果都不一样)。
论文笔记 - Active Learning by Acquiring Contrastive Examples的更多相关文章
- 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...
- 【论文笔记】Learning Fashion Compatibility with Bidirectional LSTMs
论文:<Learning Fashion Compatibility with Bidirectional LSTMs> 论文地址:https://arxiv.org/abs/1707.0 ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- 论文笔记:Learning wrapped guidance for blind face restoration
这篇论文主要是讲人脸修复的,所谓人脸修复,其实就是将低清的,或者经过压缩等操作的人脸图像进行高清复原.这可以近似为针对人脸的图像修复工作.在图像修复中,我们都会假设退化的图像是高清图像经过某种函数映射 ...
- SfMLearner论文笔记——Unsupervised Learning of Depth and Ego-Motion from Video
1. Abstract 提出了一种无监督单目深度估计和相机运动估计的框架 利用视觉合成作为监督信息,使用端到端的方式学习 网络分为两部分(严格意义上是三个) 单目深度估计 多视图姿态估计 解释性网络( ...
- 深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes
来自:CVPR 2014 作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predic ...
- 论文笔记:Learning Attribute-Specific Representations for Visual Tracking
Learning Attribute-Specific Representations for Visual Tracking AAAI-2019 Paper:http://faculty.ucmer ...
- 论文笔记:Learning regression and verification networks for long-term visual tracking
Learning regression and verification networks for long-term visual tracking 2019-02-18 22:12:25 Pape ...
- 论文笔记: Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation
Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation 2018-11-03 09:58:58 Paper: http ...
随机推荐
- 第三十二篇:vue的响应式原理
好家伙 什么是响应式?比较官方的回答: Vue.js 的核心包括一套"响应式系统". "响应式",是指当数据改变后,Vue 会通知到使用该数据的代码. 例如,视 ...
- rh358 004 bind反向,转发,主从,各种资源记录 unbound ansible部署bind unbound
通过bind实现正向,反向,转发,主从,各种资源记录 7> 部署反向解析 从ip解析到fqdn vim /etc/named.conf zone "250.25.172.in-addr ...
- KingbaseES 函数稳定性与SQL性能
背景:客户现场的一次艰苦的调优过程(https://www.cnblogs.com/kingbase/p/16015834.html),让我觉得非常有必要让数据库用户了解函数的不同稳定性属性,及其对于 ...
- Docker容器网络基础总结
ifconfig 之 docker0 基于Linux的虚拟网桥(通用网络设备的抽象) 虚拟网桥特点: 1. 可以设置IP地址 2.相当于拥有一个隐藏的虚拟网卡 docker0 的地址划分 IP: 17 ...
- kafka的auto.offset.reset详解与测试
1. 取值及定义 auto.offset.reset有以下三个可选值: latest (默认) earliest none 三者均有共同定义: 对于同一个消费者组,若已有提交的offset,则从提交的 ...
- Java SE 3、封装
封装 封装的好处 隐藏实现细节 可以对数据进行验证,保证安全合理 实现步骤 将属性进行私有化private 提供一个公共的(public)set方法,用于对属性判断并赋值 public void se ...
- ProxySQL监控后端节点
ProxySQL通过Monitor模块监控后端MySQL Server的read_only值来自动调整节点所属的组.所以,在配置读.写组之前,必须先配置好监控. 首先看下Monitor库中的表: ad ...
- 第五章:Admin管理后台
Django奉行Python的内置电池哲学.它自带了一系列在Web开发中用于解决常见问题或需求的额外的.可选工具.这些工具和插件,例如django.contrib.redirects都必须在setti ...
- 14. Fluentd输出插件:out_forward用法详解
out_forward是一个带缓存的输出插件,用于向其他节点转发日志事件,并支持转发节点之间的负载均衡和自动故障切换. out_forward支持至多一次和至少一次传输模式,默认为至多一次. out_ ...
- 2_CSS
1. 什么是CSS 1.1 什么是CSS Cascading Style Sheet 层叠样式表 是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言的一个子集)等文件样式的 ...