【雅礼集训 2017 Day2】棋盘游戏
description
给一个\(n*m\)的棋盘,'.'为可通行,'#'为障碍。Alice选择一个起始点,Bob先手从该点往四个方向走一步,Alice再走,不能走走过的点,谁不能动谁就输了。
问Alice选择哪些出发点能赢。
solution
棋盘黑白染色
分类后建二分图
1.Alice选择关键匹配点(所有的最大匹配都包含该点),Bob赢。
2.否则,Alice选择(含不包含该点的匹配),Alice赢。
证明:如果为2的话(假如Alice选的起点为S),存在一个最大匹配是不包含S的,所以对于该匹配Bob所到的一定是匹配点,接着Alice一直走非匹配点,Bob只能走到匹配点……
最后一定结束在匹配点,否则会有新的增广路。
做法肯定能想到暴力删每个点跑一次,判断是否为关键匹配点。
不过复杂度太爆炸,因此先跑一次最大流得到匹配边。其中没有被选的点已经确定为非关键匹配点了,它所连出的边(非匹配边)所到的另一个集合的点再回到它所在的集合中的匹配点,那这个匹配点一定是非关键匹配点(因为可以由它替换)。这个利用dfS配残量len=1就可以判断,记得从\(t\)搜的时候要判反边的len。
code
戳我
#include<bits/stdc++.h>
using namespace std;
const int N=1e3+5;
const int M=1e6+5;
const int inf=1e9;
char mp[N][N];
int n,m,dir[5][2]={{0,-1},{0,1},{1,0},{-1,0}};
int s,t,dis[M],gap[M],id[N][N],nxt[M],to[M],head[M],len[M],ecnt=1;
bool vis[M];
void add_edge(int u,int v,int z) {
nxt[++ecnt]=head[u];to[ecnt]=v;len[ecnt]=z;head[u]=ecnt;
nxt[++ecnt]=head[v];to[ecnt]=u;len[ecnt]=0;head[v]=ecnt;
}
queue<int> Q;
void BFS() {
for(int i=s;i<=t;i++) dis[i]=-1;
Q.push(t);gap[dis[t]=0]++;
while(!Q.empty()) {
int u=Q.front(); Q.pop();
for(int i=head[u];i;i=nxt[i]) {
int v=to[i];
if(dis[v]!=-1)continue;
gap[dis[v]=dis[u]+1]++;Q.push(v);
}
}
}
int dfs(int u,int flow) {
if(u==t) return flow;
int used=0;
for(int i=head[u];i;i=nxt[i]) {
int v=to[i];
if(len[i]&&dis[u]==dis[v]+1) {
int tmp=dfs(v,min(len[i],flow-used));
if(tmp) {len[i]-=tmp;len[i^1]+=tmp;used+=tmp;}
if(used==flow)return used;
}
}
--gap[dis[u]];
if(!gap[dis[u]]) dis[s]=t;
dis[u]++,gap[dis[u]]++;
return used;
}
int mxflow=0;
void ISAP() {
for(BFS();dis[s]<t;mxflow+=dfs(s,inf));
}
void Build() {
int tc=0;
s=0;t=n*m+1;
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)id[i][j]=++tc;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) {
if(((i+j)&1)&&mp[i][j]=='.') {
for(int d=0;d<4;d++) {
int x=i+dir[d][0],y=j+dir[d][1];
if(id[x][y]&&mp[x][y]=='.')add_edge(id[i][j],id[x][y],1);
}
add_edge(s,id[i][j],1);
}
else add_edge(id[i][j],t,1);
}
}
void dfs1(int u) {
vis[u]=1;
for(int i=head[u];i;i=nxt[i]) if(!vis[to[i]]&&len[i]) dfs1(to[i]);
}
void dfs2(int u) {
vis[u]=1;
for(int i=head[u];i;i=nxt[i]) if(!vis[to[i]]&&len[i^1]) dfs2(to[i]);
}
bool ans[N][N];
void solve() {
ISAP();dfs1(s);
int cnt=0;
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) {
if(((i+j)&1)&&vis[id[i][j]]&&mp[i][j]=='.') {ans[i][j]=1;cnt++;}
vis[id[i][j]]=0;
}
dfs2(t);
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) {
if((i+j)&1)continue;
if(mp[i][j]=='.'&&vis[id[i][j]]) {ans[i][j]=1;cnt++;}
}
printf("%d\n",cnt);
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) {
if(ans[i][j]) printf("%d %d\n",i,j);
}
}
int main() {
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%s",mp[i]+1);
Build();
solve();
return 0;
}
我老婆:

【雅礼集训 2017 Day2】棋盘游戏的更多相关文章
- 「雅礼集训 2017 Day2」解题报告
「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...
- #6034. 「雅礼集训 2017 Day2」线段游戏 李超树
#6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统 ...
- 【loj6034】「雅礼集训 2017 Day2」线段游戏
#6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:Special Judge 上传者: 匿名 题目描述 ...
- loj#6033. 「雅礼集训 2017 Day2」棋盘游戏(二分图博弈)
题意 链接 Sol 第一次做在二分图上博弈的题..感觉思路真是清奇.. 首先将图黑白染色. 对于某个点,若它一定在最大匹配上,那么Bob必胜.因为Bob可以一直沿着匹配边都,Alice只能走非匹配边. ...
- [LOJ#6033]. 「雅礼集训 2017 Day2」棋盘游戏[二分图博弈、匈牙利算法]
题意 题目链接 分析 二分图博弈经典模型,首先将棋盘二分图染色. 考虑在某个最大匹配中: 如果存在完美匹配则先手必败,因为先手选定的任何一个起点都在完美匹配中,而后手则只需要走这个点的匹配点,然后先手 ...
- LOJ6033「雅礼集训 2017 Day2」棋盘游戏 (博弈论,二分图,匈牙利算法)
什么神仙思路啊-- 看到棋盘就去想二分图.(smg啊)(其实是校内模拟赛有基本一样的题,只不过直接给了个二分图) 看到二分图就去想最大匹配.(我怎么想偶环的性质去了) (以下内容摘自这里) 这个二分图 ...
- 「雅礼集训 2017 Day2」棋盘游戏
祝各位圣诞后快乐(逃) 题目传送门 分析: 首先棋盘上的路径构成的图是一张二分图 那么对于一个二分图,先求出最大匹配,先手如果走到关键匹配点,只要后手顺着匹配边走,由于不再会出现增广路径,所以走到最后 ...
- loj#6032. 「雅礼集训 2017 Day2」水箱(并查集 贪心 扫描线)
题意 链接 Sol 神仙题+神仙做法%%%%%%%% 我再来复述一遍.. 首先按照\(y\)坐标排序,然后维护一个扫描线从低处往高处考虑. 一个连通块的内状态使用两个变量即可维护\(ans\)表示联通 ...
- LOJ#6032. 「雅礼集训 2017 Day2」水箱
传送门 首先可以有一个平方复杂度的 \(DP\) 设 \(f_{i,j}\) 表示前面 \(i\) 个小格,高度为 \(j\) 的最大答案 令 \(h_i\) 表示隔板 \(i\) 的高度 当 \(j ...
随机推荐
- 【babel+小程序】记“编写babel插件”与“通过语法解析替换小程序路由表”的经历
话不多说先上图,简要说明一下干了些什么事.图可能太模糊,可以点svg看看 背景 最近公司开展了小程序的业务,派我去负责这一块的业务,其中需要处理的一个问题是接入我们web开发的传统架构--模块化开发. ...
- vue重构--H5--canvas实现粒子时钟
上一篇文章讲解了如何用js+canvas实现粒子时钟,本篇文章 ,主要是使用vue重构,让它在vue也能使用. 我们使用简单的方式重构,不使用vue工程,先加入vue cdn的地址,如下: <s ...
- Idea运行时Scala报错Exception in thread "main" java.lang.NoSuchMethodError:com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)V
一.情况描述 使用idea +scala+spark,运行程序代码如下: package cn.idcast.hello import org.apache.spark.rdd.RDD import ...
- python爬虫---爬取王者荣耀全部皮肤图片
代码: import requests json_headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win ...
- 进入React的世界
一. React 是什么 1. 声明式写法 2. 组件化 3. 一次学习, 随处编写 二. 为什么要学习React 1. 大厂加持 - Facebook 2. 最流行, 使用人数最多, 最被开发者喜爱 ...
- Java中的反射原理以及简单运用(原理+例子)
@ 目录 学习总结 1. 为什么要使用反射 2. 反射的概念 3. Java反射加载过程 4. 反射优缺点 5. 字节码对象理解 6. 获取字节码对象(.class)的三种方式 7. 反射常用API ...
- Spring-Bean依赖注入(引用数据类型和集合数据类型)
为什么使用spring依赖注入详见–>依赖注入分析 1.创建实体类User类 package com.hao.domain; public class User { private String ...
- centos7.3 安装oracle 详细过程
centos7.3安装oracle详细过程1.下载Oracle安装包:linux.x64_11gR2_database_1of2.zip 和 linux.x64_11gR2_database_2of2 ...
- 删库到跑路?还得看这篇Redis数据库持久化与企业容灾备份恢复实战指南
本章目录 0x00 数据持久化 1.RDB 方式 2.AOF 方式 如何抉择 RDB OR AOF? 0x01 备份容灾 一.备份 1.手动备份redis数据库 2.迁移Redis指定db-数据库 3 ...
- C# 11 对 ref 和 struct 的改进
前言 C# 11 中即将到来一个可以让重视性能的开发者狂喜的重量级特性,这个特性主要是围绕着一个重要底层性能设施 ref 和 struct 的一系列改进. 但是这部分的改进涉及的内容较多,不一定能在 ...