点云滤波的概念

  点云滤波是点云处理的基本步骤,也是进行 high level 三维图像处理之前必须要进行的预处理。其作用类似于信号处理中的滤波,但实现手段却和信号处理不一样。我认为原因有以下几个方面:

  1. 点云不是函数,对于复杂三维外形其x,y,z之间并非以某种规律或某种数值关系定义。所以点云无法建立横纵坐标之间的联系。
  2. 点云在空间中是离散的。和图像,信号不一样,并不定义在某个区域上,无法以某种模板的形式对其进行滤波。换言之,点云没有图像与信号那么明显的定义域。
  3. 点云在空间中分布很广泛。历整个点云中的每个点,并建立点与点之间相互位置关系成了最大难点。不像图像与信号,可以有迹可循。
  4. 点云滤波依赖于几何信息,而不是数值关系。

  综上所述,点云滤波只在抽象意义上与信号,图像滤波类似。因为滤波的功能都是突出需要的信息。

点云滤波的方法

  PCL常规滤波手段均进行了很好的封装。对点云的滤波通过调用各个滤波器对象来完成。主要的滤波器有直通滤波器,体素格滤波器,统计滤波器,半径滤波器 等。不同特性的滤波器构成了较为完整的点云前处理族,并组合使用完成任务。实际上,滤波手段的选择和采集方式是密不可分的。

  1. 如果使用线结构光扫描的方式采集点云,必然物体沿z向分布较广,但x,y向的分布处于有限范围内。此时可使用直通滤波器,确定点云在x或y方向上的范围,可较快剪除离群点,达到第一步粗处理的目的。
  2. 如果使用高分辨率相机等设备对点云进行采集,往往点云会较为密集。过多的点云数量会对后续分割工作带来困难。体素格滤波器可以达到向下采样同时不破坏点云本身几何结构的功能。点云几何结构不仅是宏观的几何外形,也包括其微观的排列方式,比如横向相似的尺寸,纵向相同的距离。随机下采样虽然效率比体素滤波器高,但会破坏点云微观结构。
  3. 统计滤波器用于去除明显离群点(离群点往往由测量噪声引入)。其特征是在空间中分布稀疏,可以理解为:每个点都表达一定信息量,某个区域点越密集则可能信息量越大。噪声信息属于无用信息,信息量较小。所以离群点表达的信息可以忽略不计。考虑到离群点的特征,则可以定义某处点云小于某个密度,既点云无效。计算每个点到其最近的k个点平均距离。则点云中所有点的距离应构成高斯分布。给定均值与方差,可剔除3∑之外的点。
  4. 半径滤波器与统计滤波器相比更加简单粗暴。以某点为中心画一个圆计算落在该圆中点的数量,当数量大于给定值时,则保留该点,数量小于给定值则剔除该点。此算法运行速度快,依序迭代留下的点一定是最密集的,但是圆的半径和圆内点的数目都需要人工指定。

  实际上点云滤波的手段和传统的信号滤波与图像滤波在自动化程度,滤波效果上还有很大的差距。学者大多关注图像识别与配准算法在点云处理方面的移植,而对滤波算法关注较少。其实点云前处理对测量精度与识别速度都有很大影响。

点云库对滤波算法的实现

  点云库中已经包含了上述所有滤波算法。PCL滤波算法的实现是通过滤波器类来完成的,需要实现滤波功能时则新建一个滤波器对象并设置参数。从而保证可以针对不同的滤波任务,使用不同参数的滤波器对点云进行处理。

  直通滤波器:

  // Create the filtering object
pcl::PassThrough<pcl::PointXYZ> pass;
pass.setInputCloud (cloud);
pass.setFilterFieldName ("z");
pass.setFilterLimits (0.0, 1.0);
//pass.setFilterLimitsNegative (true);
pass.filter (*cloud_filtered);

  体素滤波器:

  // Create the filtering object
pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
sor.setInputCloud (cloud);
sor.setLeafSize (0.01f, 0.01f, 0.01f);
sor.filter (*cloud_filtered);

  统计滤波器:

  // Create the filtering object
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
sor.setInputCloud (cloud);
sor.setMeanK ();
sor.setStddevMulThresh (1.0);
sor.filter (*cloud_filtered);

  半径滤波器:

    // build the filter
pcl::RadiusOutlierRemoval<pcl::PointXYZ> outrem;
outrem.setInputCloud(cloud);
outrem.setRadiusSearch(0.8);
outrem.setMinNeighborsInRadius ();
// apply filter
outrem.filter (*cloud_filtered);

  显然,不同的滤波器在滤波过程中,总是先创建一个对象,再设置对象参数,最后调用滤波函数对点云进行处理(点云为智能指针指向的一块区域)

  

PCL—低层次视觉—点云滤波(初步处理)的更多相关文章

  1. PCL—低层次视觉—点云滤波(基于点云频率)

    1.点云的频率 今天在阅读分割有关的文献时,惊喜的发现,点云和图像一样,有可能也存在频率的概念.但这个概念并未在文献中出现也未被使用,谨在本博文中滥用一下“高频”一词.点云表达的是三维空间中的一种信息 ...

  2. PCL—低层次视觉—点云分割(邻近信息)

    分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最简单的分割方式就是在边界上找些居民问:"小伙子,你到底能不能上油管啊?”.然后把能上油管的居民坐标 ...

  3. PCL—低层次视觉—点云分割(RanSaC)

    点云分割 点云分割可谓点云处理的精髓,也是三维图像相对二维图像最大优势的体现.不过多插一句,自Niloy J Mitra教授的Global contrast based salient region ...

  4. PCL—低层次视觉—点云分割(基于凹凸性)

    1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割 ...

  5. PCL—低层次视觉—点云分割(超体聚类)

    1.超体聚类——一种来自图像的分割方法 超体(supervoxel)是一种集合,集合的元素是“体”.与体素滤波器中的体类似,其本质是一个个的小方块.与之前提到的所有分割手段不同,超体聚类的目的并不是分 ...

  6. PCL—低层次视觉—点云分割(基于形态学)

    1.航空测量与点云的形态学 航空测量是对地形地貌进行测量的一种高效手段.生成地形三维形貌一直是地球学,测量学的研究重点.但对于城市,森林,等独特地形来说,航空测量会受到影响.因为土地表面的树,地面上的 ...

  7. PCL—低层次视觉—点云分割(最小割算法)

    1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出 ...

  8. PCL—低层次视觉—关键点检测(rangeImage)

    关键点又称为感兴趣的点,是低层次视觉通往高层次视觉的捷径,抑或是高层次感知对低层次处理手段的妥协. ——三维视觉关键点检测 1.关键点,线,面 关键点=特征点: 关键线=边缘: 关键面=foregro ...

  9. PCL—低层次视觉—关键点检测(NARF)

    关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别.寻物联系在一起.关键点检测可以说是通往高层次视觉的重要基础.但本章节仅在低层次视觉上讨论点云处理问题,故所有 ...

随机推荐

  1. .NET开发Windows Service程序 - Topshelf

    在实际项目开发过程中,会经常写一些类似定时检查,应用监控的应用.这类应用在windows平台通常都会写成window service程序. 在百度上搜索一下'c#开发windows service', ...

  2. OpenNMS架构介绍

    一.OpenNMS简介 OpenNMS的开发基于TMN及FCAPS这两个模型. 电信管理网络(TMN)是由 ITU-T 推荐 M.3000于1985年提出作为一种应用于电信服务供应商所持有的运营支持系 ...

  3. windows32下安装zend framework2

    首先安装好php(5.3.3以上).apache和mysql apache 开启mod_rewrite 模块 将所有AllowOverride None设置为AllowOverride FileInf ...

  4. JAVA中toString方法

    因为它是Object里面已经有了的方法,而所有类都是继承Object,所以"所有对象都有这个方法". 它通常只是为了方便输出,比如System.out.println(xx),括号 ...

  5. php正则表达式判断是否为ip格式

    <?php $a = '127.0.0.111'; $b = preg_match("/^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$/",$a); ...

  6. js之正则表达式(上)

    1.正则表达式的创建方式 两种方式创建:通过new修饰符创建和字面量的方式创建 1>new修饰符方式创建 var b2=new RegExp('Box','ig'); //第二个参数是 模式字符 ...

  7. 如何编写好的jQuery代码

    本文就是自己看,如果您不小心进到了这里,请看源处,是这个作者翻译的:http://blog.sae.sina.com.cn/archives/4157 讨论jQuery和javascript性能的文章 ...

  8. 获取不到app.config里面的数据库连接字符串的解决方法

    今天在自己的类库里添加了对app.config文件的数据库连接字符串的引用,但是返回的居然是Null,纳闷了.然后在网上找到了答案原来是我的app.config文件加错了地方,应该加到启动项目里面,而 ...

  9. 在SQL SErver中实现数组功能

    T-SQL象数组一样处理字符串.分割字符串    在日常的编程过程中,数组是要经常使用到的.在利用SQL对数据库进行操作时,有时就想在SQL使用数组,比如将1,2,3,4,5拆分成数组.可惜的是在T- ...

  10. java 获取获取字符串编码格式

    public static String getEncoding(String str) { String encode = "GB2312"; try { if (str.equ ...