算法笔记_137:二分图的最大匹配(Java)
目录
1 问题描述
何为二分图的最大匹配问题?
引用自百度百科:
首先得说明一下何为匹配:
给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。
极大匹配(Maximal Matching)是指在当前已完成的匹配下,无法再通过增加未完成匹配的边的方式来增加匹配的边数。最大匹配(maximum matching)是所有极大匹配当中边数最大的一个匹配。选择这样的边数最大的子集称为图的最大匹配问题。
特别注意:二分图的最大匹配,其图为无权连通图。二分图的最大权分配,其图才是有权连通图,这两者是不同的概念。
2 解决方案
此处采用DFS方法。
具体代码如下:
package com.liuzhen.practice;
import java.util.Scanner;
public class Main {
public static int n = 0, m = 0; //二分图的左边和右边顶点数目
/*
* 参数map:给定的二分图,map[i][j]等于1表示i到j连通,为0则表示不连通
* 参数linked:linked[i] = u表示顶点i与顶点u连接
* 参数start:当前start顶点出发,寻找增广路径
* 函数功能:如果能够找到已顶点start开始的增广路径返回true,否则返回false
*/
public boolean dfs(int[][] map, boolean[] used, int[] linked, int start) {
for(int i = 0;i < m;i++) {
if(used[i] == false && map[start][i] == 1) {
used[i] = true;
if(linked[i] == -1 || dfs(map, used, linked, linked[i])) {
linked[i] = start;
return true;
}
}
}
return false;
}
public int getMaxNum(int[][] map) {
int count = 0;
int[] linked = new int[m];
for(int i = 0;i < m;i++)
linked[i] = -1;
for(int i = 0;i < n;i++) {
boolean[] used = new boolean[m]; //初始化m部分顶点均为被访问
if(dfs(map, used, linked, i)) //从顶点i出发能够得到一条增广路径
count++;
}
return count;
}
public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
n = in.nextInt();
m = in.nextInt();
int[][] map = new int[n][m];
int k = in.nextInt(); //二分图中边的数目
for(int i = 0;i < k;i++) {
int a = in.nextInt(); //n部分中的顶点
int b = in.nextInt(); //m部分中顶点
map[a][b] = 1;
}
System.out.println(test.getMaxNum(map));
}
}
参考资料:
算法笔记_137:二分图的最大匹配(Java)的更多相关文章
- 算法笔记_023:拓扑排序(Java)
目录 1 问题描述 2 解决方案 2.1 基于减治法实现 2.2 基于深度优先查找实现 1 问题描述 给定一个有向图,求取此图的拓扑排序序列. 那么,何为拓扑排序? 定义:将有向图中的顶点以线性方式进 ...
- 算法笔记_139:二分图的最大权匹配(Java)
目录 1 问题描述 2 解决方案 1 问题描述 何为二分图的最大权匹配问题? 最大权二分匹配问题就是给二分图的每条边一个权值,选择若干不相交的边,得到的总权值最大. 2 解决方案 对于此问题的讲解 ...
- 【算法笔记】二分图与KM算法(当你试图只看蓝书学算法
前言 呜,好久没写博客了,DDL 也有好多,一不留神就轮到我了呜. 看了一眼其它同学写的博客,什么数模啊,什么 CTF 啊,什么 Python 爬虫啊,感觉自己真是越来越菜了呜. 然后在我一愁莫展之际 ...
- 算法笔记_228:信用卡号校验(Java)
目录 1 问题描述 2 解决方案 1 问题描述 当你输入信用卡号码的时候,有没有担心输错了而造成损失呢?其实可以不必这么担心,因为并不是一个随便的信用卡号码都是合法的,它必须通过Luhn算法来验证 ...
- 算法笔记_138:稳定婚姻问题(Java)
目录 1 问题描述 2 解决方案 1 问题描述 何为稳定婚姻问题? 有一个男士的集合Y = {m1,m2,m3...,mn}和一个女士的计划X = {n1,n2,n3,...,nn}.每一个男士有 ...
- 算法笔记_132:最大流量问题(Java)
目录 1 问题描述 2 解决方案 1 问题描述 何为最大流量问题? 给定一个有向图,并为每一个顶点设定编号为0~n,现在求取从顶点0(PS:也可以称为源点)到顶点n(PS:也可以称为汇点)后,顶点 ...
- 算法笔记_040:二进制幂(Java)
目录 1 问题描述 2 解决方案 2.1 从左至右二进制幂 2.2 从右至左二进制幂 1 问题描述 使用n的二进制表示,计算a的n次方. 2 解决方案 2.1 从左至右二进制幂 此方法计算a的n次 ...
- 算法笔记_014:合并排序(Java)
1 问题描述 给定一组数据,使用合并排序得到这组数据的非降序排列. 2 解决方案 2.1 合并排序原理简介 引用自百度百科: 合并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Div ...
- 算法笔记_233:二阶魔方旋转(Java)
目录 1 问题描述 2 解决方案 1 问题描述 魔方可以对它的6个面自由旋转. 我们来操作一个2阶魔方(如图1所示): 为了描述方便,我们为它建立了坐标系. 各个面的初始状态如下:x轴正向:绿x轴 ...
随机推荐
- 20162325 金立清 S2 W6 C15
20162325 2017-2018-2 <程序设计与数据结构>第6周学习总结 教材学习内容概要 队列是先进先出(FIFO)的集合 队列是保存重复编码k值的一种有效结构 实现模拟时常用队列 ...
- django深入-ORM操作
1 ORM添加 1.1 一对多添加 方式一: pub_obj=Publish.objects.get(id=2) Book.objects.create(title="python" ...
- hdu 1561 树形dp+分组背包
题意:就是给定n个点,每个地点有value[i]的宝物,而且有的宝物必须是另一个宝物取了才能取,问取m个点可以获得的最多宝物价值. 一个子节点就可以返回m个状态,每个状态表示容量为j(j<=m) ...
- __declspec(dllexport) 和 __declspec(dllimport)的区别
最近看MXNet的源码,其中c_api.h中发现遇到__declspec(dllexport) 和 __declspec(dllimport). __declspec(dllexport)用于导出符号 ...
- bzoj 3784
第三道点分治. 首先找到黄学长的题解,他叫我参考XXX的题解,但已经没有了,然后找到另一个博客的简略题解,没看懂,最后看了一个晚上黄学长代码,写出来然后,写暴力都拍了小数据,但居然超时,....然后改 ...
- 21.多源最短路(floyd算法)
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 已知n个点(n<=100),给你n*n的方阵,a[i,j] ...
- codeforces 85D D. Sum of Medians Vector的妙用
D. Sum of Medians Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...
- Markdown 简明语法手册 - 作业
目录 Cmd Markdown 简明语法手册 1. 内容目录 2. 标签分类 3. 删除线 水平线--- 1. 斜体和粗体 2. 分级标题 标题1 标题2 标题3 3. 外链接 4. 无序列表 5. ...
- 《C# to IL》第二章 IL基础
如果你真的想要理解C#代码,那么最好的方法就是通过理解由C#编译器生成的代码.本章和下面两章将关注于此. 我们将用一个短小的C#程序来揭开IL的神秘面纱,并解释由编译器生成的IL代码.这样,我们就可以 ...
- svn使用经验---不断总结
删除文件或文件夹 svn rm 名字 --force svn ci (系统会提示输入提交日志) 执行完这两步后,才能被真正删除 添加文件或文件夹 svn add 文件名 --force ...