【题意】给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数。n<=100。

【算法】高斯消元解异或方程组

【题解】设f[i]=0/1表示是否按第i个点的按钮,根据每个灯的亮灭可以列出n个方程:a[i][j]表示第i盏灯是否受开关j影响,a[i][n+1]=a[i][i]=1。

由于方案不唯一,所以有自由元,DFS所有自由元得到所有可能答案,比较得到最少次数。DFS记得加最优性剪枝。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
bool a[maxn][maxn],A[maxn];
int n,ans;
void gauss(){
for(int i=;i<=n;i++){
int r=i;
for(int j=i;j<=n;j++)if(a[j][i]){r=j;break;}
if(!a[r][i])continue;
if(r!=i)for(int j=i;j<=n+;j++)swap(a[i][j],a[r][j]);
for(int j=i+;j<=n;j++)if(a[j][i]){
for(int k=n+;k>=i;k--){
a[j][k]^=a[i][k];
}
}
}
}
void dfs(int x,int now){
if(now>=ans)return;
if(!x){ans=now;return;}
if(a[x][x]){
A[x]=a[x][n+];
for(int j=x+;j<=n;j++)A[x]^=a[x][j]*A[j];
dfs(x-,now+A[x]);
}
else{
A[x]=;dfs(x-,now);
A[x]=;dfs(x-,now+);
}
} int main(){
scanf("%d",&n);
while(n){
memset(a,,sizeof(a));
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
a[u][v]=a[v][u]=;
}
for(int i=;i<=n;i++)a[i][i]=a[i][n+]=;
gauss();
ans=0x3f3f3f3f;
dfs(n,);
printf("%d\n",ans);
scanf("%d",&n);
}
return ;
}

【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组的更多相关文章

  1. BZOJ 2466: [中山市选2009]树( 高斯消元 )

    高斯消元解异或方程组...然后对自由元进行暴搜.树形dp应该也是可以的... ------------------------------------------------------------- ...

  2. BZOJ 2466 中山市选2009 树 高斯消元+暴力

    题目大意:树上拉灯游戏 高斯消元解异或方程组,对于全部的自由元暴力2^n枚举状态,代入计算 这做法真是一点也不优雅... #include <cstdio> #include <cs ...

  3. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  4. BZOJ 2466 [中山市选2009]树(高斯消元)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2466 [题目大意] 给定一棵树,每个节点有一盏指示灯和一个按钮.如果节点的按扭被按了, ...

  5. BZOJ 2466: [中山市选2009]树

    Sol 树形DP. 听说有非常神奇的高斯消元的做法...orz... 然而我只会 \(O(n)\) 的树形DP. 首先一个点的状态只于他的父节点和子树有关,跟他 子树的子树 和 父亲的父亲 都没有任何 ...

  6. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10835   Accepted: 6 ...

  7. 【poj1830-开关问题】高斯消元求解异或方程组

    第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关 ...

  8. hihocoder 第五十二周 高斯消元·二【高斯消元解异或方程 难点【模板】】

    题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是 ...

  9. poj2947(高斯消元解同模方程组)

    题目链接:http://poj.org/problem?id=2947 题意:有n 种装饰物,m 个已知条件,每个已知条件的描述如下: p start enda1, a2......ap (1< ...

随机推荐

  1. LAMP环境搭建Wordpress个人博客

    LAMP简要介绍 L:LinuxA:Apache(httpd)M:MySQL , MariadbP:php, perl , python 静态资源:图片,文档,视频,HTML代码,CSS代码,js代码 ...

  2. 敏捷冲刺Day7

    一. 每日会议 1. 照片 2. 昨日完成工作 3. 今日完成工作 第一阶段的测试 全部队员对各个方面进行深入检查,找出细节问题 4. 工作中遇到的困难 工作中的困难:对自己做出来的产品进行否定.以求 ...

  3. mysql有索引和无索引的查询速度对比

    演示100万级数据有索引和无索引的情况下的查找速度:

  4. NIO网络编程中重复触发读(写)事件

    一.前言 公司最近要基于Netty构建一个TCP通讯框架, 因Netty是基于NIO的,为了更好的学习和使用Netty,特意去翻了之前记录的NIO的资料,以及重新实现了一遍NIO的网络通讯,不试不知道 ...

  5. Ubuntu的IP地址配置

    概况和需求: 我的主机上有两块网卡,识别后分别是eth0和eth1.eth0配置需要为静态ip,eth1配置为使用动态主机协议获取ip地址. 步骤: 首先碰到的一个问题就是不知道eth0和eth1对应 ...

  6. HDU4767_Sum Of Gcd

    通过一个题目,学到了很多. 题意为给你n个数,每次询问i,j,答案为i,j间任取两数所有的取法gcd的和. 假设我们当前要看看这个区间有多少个数的gcd为x,最最原始的想法都是查询这个区间有多少个数为 ...

  7. POJ2823_Sliding Window

    以前也碰到过这种类型的题目,以前好像做出来过,但是忘记了,这次又坑了. 题目很简单,对于从前到后每一个连续的长度为k的数字,求出这段数字中的最大的数字和最小的数字. 一开始我用离散化+树状数组来更新和 ...

  8. BZOJ4921 互质序列

    即求删掉一个子序列的gcd之和.注意到前后缀gcd的变化次数都是log级的,于是暴力枚举前缀gcd和后缀gcd即可. #include<iostream> #include<cstd ...

  9. Period UVALive - 3026(next数组)

    题意: 给出一个长度不超过1000000的字符串S, 对于该字符串的所有前缀求其周期, 如果周期K >= 2输出起始位置是第几个字符和其周期K 解析: 先求next数组 对于每一个位置如果i % ...

  10. 我是一个CPU:这个世界慢!死!了!

    最近小编看到一篇十分有意思的文章,多方位.无死角的讲解了CPU关于处理速度的理解,看完之后真是豁然开朗.IOT时代,随着科技的发展CPU芯片的处理能力越来越强,强大的程度已经超乎了我们的想象.今天就把 ...