Spring-data-elasticsearch是Spring提供的操作ElasticSearch的数据层,封装了大量的基础操作,通过它可以很方便的操作ElasticSearch的数据。

版本说明

ElasticSearch目前最新的已到5.5.1

spring data elasticsearch elasticsearch
3.0.0.RC1 5.5.0
3.0.0.M4 5.4.0
2.0.4.RELEASE 2.4.0
2.0.0.RELEASE 2.2.0
1.4.0.M1 1.7.3
1.3.0.RELEASE 1.5.2
1.2.0.RELEASE 1.4.4
1.1.0.RELEASE 1.3.2
1.0.0.RELEASE 1.1.1

这有一个对应关系,不过不太完整,我目前使用的SpringBoot版本1.5.4对应的spring-data-ElasticSearch是2.1.4,在图上就没有体现。

但是可以预见对应的ElasticSearch应该在2.4.*往上,但应该是不支持5.4.0及以上。

注意:我这篇例子,所使用的ElasticSearch版本就是最新的5.5.1,SpringBoot版本是1.5.4,经初步试验,插入及查询都没问题。估计是5.5.*的新特性之类的会无法使用,基本操作应该都没问题。

ElasticSearchRepository的基本使用

@NoRepositoryBean
public interface ElasticsearchRepository<T, ID extends Serializable> extends ElasticsearchCrudRepository<T, ID> {
    <S extends T> S index(S var1);

    Iterable<T> search(QueryBuilder var1);

    Page<T> search(QueryBuilder var1, Pageable var2);

    Page<T> search(SearchQuery var1);

    Page<T> searchSimilar(T var1, String[] var2, Pageable var3);

    void refresh();

    Class<T> getEntityClass();
}

我们是通过继承ElasticsearchRepository来完成基本的CRUD及分页操作的,和普通的JPA没有什么区别。

ElasticsearchRepository继承了ElasticsearchCrudRepository extends PagingAndSortingRepository.

先看看普通查询:
public interface BookRepository extends Repository<Book, String> {

        List<Book> findByNameAndPrice(String name, Integer price);

        List<Book> findByNameOrPrice(String name, Integer price);

        Page<Book> findByName(String name,Pageable page);

        Page<Book> findByNameNot(String name,Pageable page);

        Page<Book> findByPriceBetween(int price,Pageable page);

        Page<Book> findByNameLike(String name,Pageable page);

        @Query("{\"bool\" : {\"must\" : {\"term\" : {\"message\" : \"?0\"}}}}")
        Page<Book> findByMessage(String message, Pageable pageable);
    }

这个没什么特点,就是普通的JPA查询,这个很熟悉,通过上面的JPA查询就能完成很多的基本操作了。

插入数据也很简单:
@Autowired
        private SampleElasticsearchRepository repository;

        String documentId = "123456";
        SampleEntity sampleEntity = new SampleEntity();
        sampleEntity.setId(documentId);
        sampleEntity.setMessage("some message");

        repository.save(sampleEntity);

还可以批量插入数据:

@Autowired
        private SampleElasticsearchRepository repository;

        String documentId = "123456";
        SampleEntity sampleEntity1 = new SampleEntity();
        sampleEntity1.setId(documentId);
        sampleEntity1.setMessage("some message");

        String documentId2 = "123457"
        SampleEntity sampleEntity2 = new SampleEntity();
        sampleEntity2.setId(documentId2);
        sampleEntity2.setMessage("test message");

        List<SampleEntity> sampleEntities = Arrays.asList(sampleEntity1, sampleEntity2);

        //bulk index
        repository.save(sampleEntities);

特殊情况下,ElasticsearchRepository里面有几个特殊的search方法,这些是ES特有的,和普通的JPA区别的地方,用来构建一些ES查询的。
主要是看QueryBuilder和SearchQuery两个参数,要完成一些特殊查询就主要看构建这两个参数。
我们先来看看它们之间的类关系

从这个关系中可以看到ES的search方法需要的参数SearchQuery是一个接口,有一个实现类叫NativeSearchQuery,实际使用中,我们的主要任务就是构建NativeSearchQuery来完成一些复杂的查询的。


我们可以看到要构建NativeSearchQuery,主要是需要几个构造参数
public NativeSearchQuery(QueryBuilder query, QueryBuilder filter, List<SortBuilder> sorts, Field[] highlightFields) {
        this.query = query;
        this.filter = filter;
        this.sorts = sorts;
        this.highlightFields = highlightFields;
    }

当然了,我们没必要实现所有的参数。

可以看出来,大概是需要QueryBuilder,filter,和排序的SortBuilder,和高亮的字段。
一般情况下,我们不是直接是new NativeSearchQuery,而是使用NativeSearchQueryBuilder。
通过NativeSearchQueryBuilder.withQuery(QueryBuilder1).withFilter(QueryBuilder2).withSort(SortBuilder1).withXXXX().build();这样的方式来完成NativeSearchQuery的构建。



从名字就能看出来,QueryBuilder主要用来构建查询条件、过滤条件,SortBuilder主要是构建排序。
譬如,我们要查询距离某个位置100米范围内的所有人、并且按照距离远近进行排序:
double lat = 39.929986;
        double lon = 116.395645;

        Long nowTime = System.currentTimeMillis();
        //查询某经纬度100米范围内
        GeoDistanceQueryBuilder builder = QueryBuilders.geoDistanceQuery("address").point(lat, lon)
                .distance(100, DistanceUnit.METERS);

        GeoDistanceSortBuilder sortBuilder = SortBuilders.geoDistanceSort("address")
                .point(lat, lon)
                .unit(DistanceUnit.METERS)
                .order(SortOrder.ASC);

        Pageable pageable = new PageRequest(0, 50);

        NativeSearchQueryBuilder builder1 = new NativeSearchQueryBuilder().withFilter(builder).withSort(sortBuilder).withPageable(pageable);
        SearchQuery searchQuery = builder1.build();

要完成字符串的查询:

SearchQuery searchQuery = new NativeSearchQueryBuilder().withQuery(QueryBuilders.queryStringQuery("spring boot OR 书籍")).build();

要构建QueryBuilder,我们可以使用工具类QueryBuilders,里面有大量的方法用来完成各种各样的QueryBuilder的构建,字符串的、Boolean型的、match的、地理范围的等等。

要构建SortBuilder,可以使用SortBuilders来完成各种排序。
然后就可以通过NativeSearchQueryBuilder来组合这些QueryBuilder和SortBuilder,再组合分页的参数等等,最终就能得到一个SearchQuery了。
至此,我们明白了ElasticSearchRepository里那几个search查询方法需要的参数的含义和构建方式了。

ElasticSearchTemplate的使用

ElasticSearchTemplate更多是对ESRepository的补充,里面提供了一些更底层的方法。



这里主要是一些查询相关的,同样是构建各种SearchQuery条件。
也可以完成add操作
String documentId = "123456";
        SampleEntity sampleEntity = new SampleEntity();
        sampleEntity.setId(documentId);
        sampleEntity.setMessage("some message");
        IndexQuery indexQuery = new IndexQueryBuilder().withId(sampleEntity.getId()).withObject(sampleEntity).build();
        elasticsearchTemplate.index(indexQuery);

add主要是通过index方法来完成,需要构建一个IndexQuery对象



构建这个对象,主要是设置一下id,就是你的对象的id,Object就是对象本身,indexName和type就是在你的对象javaBean上声明的


其他的字段自行发掘含义,构建完IndexQuery后就可以通过Template的index方法插入了。
template里还有各种deleteIndex,delete,update等方法,用到的时候就查查看吧。
下面讲一个批量插入的方法,我们经常需要往ElasticSearch中插入大量的测试数据来完成测试搜索,一条一条插肯定是不行的,ES提供了批量插入数据的功能——bulk。
前面讲过JPA的save方法也可以save(List)批量插值,但适用于小数据量,要完成超大数据的插入就要用ES自带的bulk了,可以迅速插入百万级的数据。
在ElasticSearchTemplate里也提供了对应的方法
public void bulkIndex(List<IndexQuery> queries) {
        BulkRequestBuilder bulkRequest = this.client.prepareBulk();
        Iterator var3 = queries.iterator();

        while(var3.hasNext()) {
            IndexQuery query = (IndexQuery)var3.next();
            bulkRequest.add(this.prepareIndex(query));
        }

        BulkResponse bulkResponse = (BulkResponse)bulkRequest.execute().actionGet();
        if (bulkResponse.hasFailures()) {
            Map<String, String> failedDocuments = new HashMap();
            BulkItemResponse[] var5 = bulkResponse.getItems();
            int var6 = var5.length;

            for(int var7 = 0; var7 < var6; ++var7) {
                BulkItemResponse item = var5[var7];
                if (item.isFailed()) {
                    failedDocuments.put(item.getId(), item.getFailureMessage());
                }
            }

            throw new ElasticsearchException("Bulk indexing has failures. Use ElasticsearchException.getFailedDocuments() for detailed messages [" + failedDocuments + "]", failedDocuments);
        }
    }

    public void bulkUpdate(List<UpdateQuery> queries) {
        BulkRequestBuilder bulkRequest = this.client.prepareBulk();
        Iterator var3 = queries.iterator();

        while(var3.hasNext()) {
            UpdateQuery query = (UpdateQuery)var3.next();
            bulkRequest.add(this.prepareUpdate(query));
        }

        BulkResponse bulkResponse = (BulkResponse)bulkRequest.execute().actionGet();
        if (bulkResponse.hasFailures()) {
            Map<String, String> failedDocuments = new HashMap();
            BulkItemResponse[] var5 = bulkResponse.getItems();
            int var6 = var5.length;

            for(int var7 = 0; var7 < var6; ++var7) {
                BulkItemResponse item = var5[var7];
                if (item.isFailed()) {
                    failedDocuments.put(item.getId(), item.getFailureMessage());
                }
            }

            throw new ElasticsearchException("Bulk indexing has failures. Use ElasticsearchException.getFailedDocuments() for detailed messages [" + failedDocuments + "]", failedDocuments);
        }
    }

和index插入单条数据一样,这里需要的是List<IndexQuery>仅此而已,是不是很简单。


public void bulkIndex(List<Person> personList) {
        int counter = 0;
        try {
            if (!elasticsearchTemplate.indexExists(PERSON_INDEX_NAME)) {
                elasticsearchTemplate.createIndex(PERSON_INDEX_TYPE);
            }
            List<IndexQuery> queries = new ArrayList<>();
            for (Person person : personList) {
                IndexQuery indexQuery = new IndexQuery();
                indexQuery.setId(person.getId() + "");
                indexQuery.setObject(person);
                indexQuery.setIndexName(PERSON_INDEX_NAME);
                indexQuery.setType(PERSON_INDEX_TYPE);

                //上面的那几步也可以使用IndexQueryBuilder来构建
                //IndexQuery index = new IndexQueryBuilder().withId(person.getId() + "").withObject(person).build();

                queries.add(indexQuery);
                if (counter % 500 == 0) {
                    elasticsearchTemplate.bulkIndex(queries);
                    queries.clear();
                    System.out.println("bulkIndex counter : " + counter);
                }
                counter++;
            }
            if (queries.size() > 0) {
                elasticsearchTemplate.bulkIndex(queries);
            }
            System.out.println("bulkIndex completed.");
        } catch (Exception e) {
            System.out.println("IndexerService.bulkIndex e;" + e.getMessage());
            throw e;
        }
    }

这里是创建了100万个Person对象,每到500就用bulkIndex插入一次,速度飞快,以秒的速度插入了百万数据。


OK,这篇主要是讲一些ElasticSearchRepository和ElasticSearchTemplate的用法,构造QueryBuilder的方式。下一篇用实例来看一下,在百万或者更大量级的数据中查询距离某个坐标100米范围内的所有数据。





ElasticSearchRepository和ElasticSearchTemplate的使用的更多相关文章

  1. springboot整合elasticsearch入门例子

    springboot整合elasticsearch入门例子 https://blog.csdn.net/tianyaleixiaowu/article/details/72833940 Elastic ...

  2. windows下elasticsearch配置及spring boot 简单demod的 整合

    学习过程: elasticsearch 下载安装 elasticsearch-head 安装 spring boot 下elasticsearch的配置 使用ElasticsearchReposito ...

  3. Spring Boot高级

    Spring Boot高级内容概要一.Spring Boot与缓存二.Spring Boot与消息三.Spring Boot与检索四.Spring Boot与任务五.Spring Boot与安全六.S ...

  4. Spring Boot + Elasticsearch 实现索引批量写入

    在使用Eleasticsearch进行索引维护的过程中,如果你的应用场景需要频繁的大批量的索引写入,再使用上篇中提到的维护方法的话显然效率是低下的,此时推荐使用bulkIndex来提升效率.批写入数据 ...

  5. spring Boot 学习(三、Spring Boot与检索)

    一.检索我们的应用经常需要添加检索功能,开源的 ElasticSearch 是目前全文搜索引擎的 首选.他可以快速的存储.搜索和分析海量数据.Spring Boot通过整合Spring Data El ...

  6. elastic search book [ ElasticSearch book es book]

    谁在使用ELK 维基百科, github都使用 ELK (ElasticSearch es book) ElasticSearch入门 Elasticsearch入门,这一篇就够了==>http ...

  7. SpringBoot笔记二:整合篇

    Spring Boot与缓存 jsr-107 Java Caching定义了5个核心接口分别是CachingProvider, CacheManager, Cache, Entry 和 Expiry. ...

  8. elasticsearchTemplate that could not be found

    ***************************APPLICATION FAILED TO START*************************** Description: Metho ...

  9. Spring ElasticsearchTemplate 经纬度按距离排序

    es实体,用 @GeoPointField 注解,值为:中间逗号隔开,如 29.477000,119.278536(经度, 维度) @Document(indexName = "v_inte ...

随机推荐

  1. 20145313 《Java程序设计》第十周学习总结

    网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定的位置,或者接收到指定的数据,这个就是狭义的网络编程范畴.在发送和接收数据时,大部分的程序设 ...

  2. 1_jenkins环境搭建

    前言 为什么要使用jenkins 可以实现批量部署.管理 支持常见的版本控制工具,git, svn等 发展成熟,使用范围广,容易找到解决方案 插件丰富,可以满足自己的需求 什么是jenkins 简单的 ...

  3. [BZOJ1026]windy数

    Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? In ...

  4. Docker Mysql主主同步配置搭建Demo

    主主同步配置和主从配置很相似,仅需稍做修改就可以了,对主从配置有疑问可以查看 上一篇文章. 进行Docker操作前,先建立目录,我的路径是d:/docker/mysql,目录结构如下: --mysql ...

  5. 【Network Architecture】Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(转)

    文章来源: https://www.cnblogs.com/shouhuxianjian/p/7786760.html Feature Extractor[Inception v4] 0. 背景 随着 ...

  6. spring boot2.1读取 apollo 配置中心3

    上篇记录了springboot读取apollo的配置信息,以及如何获取服务端的推送更新配置. 接下来记录一下,如何获取公共namespace的配置. 上文中使用如下代码共聚公共命名空间的配置: @Ap ...

  7. 这样获取celery的结果 有啥隐患没有啊?

  8. 关于http请求ContentType:application/x-www-form-urlencoded

    在又一次http请求过程中,模拟post请求提交form表单数据一直提示部分参数为空,后面检查发现是缺少ContentType:application/x-www-form-urlencoded的原因 ...

  9. Angular 4.x 修仙之路

    参考:https://segmentfault.com/a/1190000008754631 一个Angular4的博客教程目录

  10. PIL中文文档

    (0)http://hereson.iteye.com/blog/2224334 (1)http://blog.csdn.net/yjwx0018/article/details/52852067 ( ...