ufldl学习笔记与编程作业:Linear Regression(线性回归)
ufldl学习笔记与编程作业:Linear Regression(线性回归)
ufldl出了新教程,感觉比之前的好。从基础讲起。系统清晰,又有编程实践。
在deep learning高质量群里面听一些前辈说。不必深究其它机器学习的算法。能够直接来学dl。
于是近期就開始搞这个了,教程加上matlab编程,就是完美啊。
新教程的地址是:http://ufldl.stanford.edu/tutorial/
本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/
从一个最简单的线性回归,能够非常清晰地看出建模解决这个问题的一般思路。
1 定义目标函数;
2 最优化目标函数:求偏导数,求梯度。通过最优化的手段,比方梯度下降。拟牛顿发等。
求出最优解。
这里的习题比較特殊,不须要我们自己实现梯度下降法。
而是对參数求出目标函数的偏导数,然后把剩下的最优化工作交给一个叫minFunc的函数去做了。
本来这节仅仅须要读者用最简单的for循环来实现,后面有一个章节才要求用向量化的方法。
因为对线性回归算是比較熟悉了,这里就偷懒,直接用向量化方法实现了。
linear_regression.m代码例如以下:
function [f,g] = linear_regression(theta, X,y)
%
% Arguments:
% theta - A vector containing the parameter values to optimize.
% X - The examples stored in a matrix.
% X(i,j) is the i'th coordinate of the j'th example.
% y - The target value for each example. y(j) is the target for example j.
% m=size(X,2);%列数
n=size(X,1);%行数 f=0;
g=zeros(size(theta));
h = theta' * X;
f = (1/2)*h*h';%刚開始算错了目标函数,事实上目标函数就是代价函数,而不是如果函数
g = X*((h-y)'); %
% TODO: Compute the linear regression objective by looping over the examples in X.
% Store the objective function value in 'f'.
%
% TODO: Compute the gradient of the objective with respect to theta by looping over
% the examples in X and adding up the gradient for each example. Store the
% computed gradient in 'g'.
结果例如以下:
对于向量化编程。感觉要对立面全部的矩阵在脑海里都要有一个印象才行。
没印象的话。多在纸上多画几下就好。
此前也写过一篇《
从零单排入门机器学习:线性回归(linear regression)实践篇
》。
里面提到这点。
事实上,今晚做这个作业的时候,遇到两个坑。
第一个是求错f,我以为f是求如果函数的值H,事实上是要求目标函数。代价函数。
開始还看到是库函数minFunc里面调用的函数报错,以为人家给的代码有bug。
后来发现自己求错了。
第二个是Octave调用C代码。比方lbfgsAddC.c和lbfgsProdC.c。这两个文件在mex目录里。
查了相关资料。才知道。先要编译为mex文件。才干被Octave调用。
m文件一般跟mex同文件夹。应该也能够指定文件夹,详细没深究。
https://www.gnu.org/software/octave/doc/interpreter/Getting-Started-with-Mex_002dFiles.html#Getting-Started-with-Mex_002dFiles
编译c为mex:
mkoctfile --mex myhello.c
mkoctfile 在Octave的bin文件夹里,这玩意还要调用gcc和g++。
所以得把gcc和g++所在文件夹加入到环境变量。
本文作者:linger
本文链接:http://blog.csdn.net/lingerlanlan/article/details/38377023
ufldl学习笔记与编程作业:Linear Regression(线性回归)的更多相关文章
- ufldl学习笔记和编程作业:Softmax Regression(softmax回报)
ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量 ...
- ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)
ufldl学习笔记与编程作业:Softmax Regression(vectorization加速) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learn ...
- ufldl学习笔记与编程作业:Logistic Regression(逻辑回归)
ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听 ...
- ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)
ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰 ...
- ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程)
ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程) ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在dee ...
- Andrew Ng机器学习编程作业: Linear Regression
编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matla ...
- Coursera machine learning 第二周 编程作业 Linear Regression
必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...
- week3编程作业: Logistic Regression中一些难点的解读
%% ============ Part : Compute Cost and Gradient ============ % In this part of the exercise, you wi ...
- 吴恩达《机器学习》编程作业——machine-learning-ex1:线性回归
❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octa ...
随机推荐
- MyBATIS插件原理第一篇——技术基础(反射和JDK动态代理)(转)
在介绍MyBATIS插件原理前我们需要先学习一下一些基础的知识,否则我们是很难理解MyBATIS的运行原理和插件原理的. MyBATIS最主要的是反射和动态代理技术,让我们首先先熟悉它们. 1:Jav ...
- Linux网络编程(3)——多进程、多线程
在我的里面已经介绍了linux以下c的进程.线程接口,这里就不做过多阐述了. 多进程 这里多进程採用传统的多进程模型.每当有client发来的连接时创建一个进程来处理连接,一个子进程相应一个连接. 有 ...
- java ee5的新特性
1.标注 一种元数据,作用分为三类:编写文档@Document.代码分析@Deparecated(过时的)和编译检查@override(重写) 2.EJB3 EJB2的升级版,商业化的java bea ...
- Wing IDE 怎样设置 python版本号
机器上同一时候装了Python3和Python2,使用Wing IDE, 由于Python2和3是有非常大的差别的,所以时不时的须要更改IDE使用的Python版本号.以下介绍方法: 1.打开Edit ...
- Reroute Unassigned Shards——遇到主shard 出现的解决方法就是重新路由
Red Cluster! 摘自:http://blog.kiyanpro.com/2016/03/06/elasticsearch/reroute-unassigned-shards/ There a ...
- Java多线程编程模式实战指南(一):Active Object模式--转载
本文由黄文海首次发布在infoq中文站上:http://www.infoq.com/cn/articles/Java-multithreaded-programming-mode-active-obj ...
- NPOI 给导出Excel添加简单样式
需求分析:如下图为我之前导出的Excel数据,没有一点样式,标题行不明显,各个列的数据紧凑,查看数据时得手动拉宽每列,故这次要针对以上问题对它进行优化 结果展示: 代码: /// <summar ...
- 使用Java开发高性能网站需要关注的那些事儿2
近期各家IT媒体举办的业内技术大会让很多网站都在披露自己的技术内幕与同行们分享,大到facebook,百度,小到刚起步的网站.facebook,百度之类的大型网站采用的技术和超凡的处理能力的确给人 ...
- c++类模板初探
#include <iostream> #include <string> using namespace std; // 你提交的代码将嵌入到这里 ; template &l ...
- 异步线程编程,线程池,线程组,后面涉及ThreadLocal在理解
join模拟订单 package com.future.demo.future; /** * * * @author Administrator * */ public class NormalThr ...