bzoj 2801 [Poi2012]Minimalist Security 设一个,求出所有
题目大意
给出一个N个顶点、M条边的无向图,边(u,v)有权值w(u,v),顶点i也有权值p(i),
并且对于每条边(u,v)都满足p(u)+p(v)>=w(u,v)。
现在要将顶点i的权值减去z(i),其中0<=z(i)<=p(i)。
修改后设顶点i的权值p'(i)=p(i)-z(i),对于每条边(u,v)都满足p'(u)+p'(v)=w(u,v)。
求sum{z(i)}的最小值和最大值。
无解输出NIE
分析
可以搞出很多对方程组
\(A+B=C\)
\(0\le A \le p_A\)
\(0\le B \le p_B\)
之类的
由于是一幅图
对于每个连通块
我们设其中一个点为x
其它的所有点都可以用kx+b来表示,k为\(\pm1\)
正样我们可以求出x的取值范围
进而求出最大最小值
注意
x空集NIE
如果便利到一个点已经有k和b
1.k相同,b不同,NIE
2.k不同,直接将x的取值范围确定为一个定值
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=500007;
const int M=3000007;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
LL mn=0,mx=0;
int n,m;
LL fir[N];
int g[N],te;
struct edge{int y,next;LL d;}e[M<<1];
void addedge(int x,int y,LL d){
e[++te].y=y;e[te].d=d;e[te].next=g[x];g[x]=te;
}
int vis[N];
LL k[N],b[N];
LL n_mx,n_mn;
LL n_k,n_b;
int q[N];
void NIE(){
puts("NIE");
exit(0);
}
void bfs(int bg){
int h=0,t=1,x,p,y;
LL lf,rt;
LL kk,bb;
q[t]=bg;
vis[bg]=1;
while(h^t){
x=q[++h];
n_k+=k[x];
n_b+=b[x];
if(k[x]==-1) lf=b[x]-fir[x],rt=b[x];
else lf=-b[x],rt=fir[x]-b[x];
if(rt<n_mn) NIE();
if(lf>n_mx) NIE();
if(lf>rt) NIE();
n_mn=max(n_mn,lf);
n_mx=min(n_mx,rt);
for(p=g[x];p;p=e[p].next){
y=e[p].y;
if(!vis[y]){
k[y]=-k[x];
b[y]=e[p].d-b[x];
q[++t]=y;
vis[y]=1;
}
else{
kk=-k[x];
bb=e[p].d-b[x];
if(kk==k[y]){
if(bb!=b[y]) NIE();
}
else{
bool rev=0;
if(kk==-1) swap(kk,k[y]),swap(bb,b[y]),rev=1;
if(b[y]-bb<0) NIE();
if((b[y]-bb)&1) NIE();
lf=rt=(b[y]-bb)/2;
if(rt<n_mn) NIE();
if(lf>n_mx) NIE();
if(lf>rt) NIE();
n_mn=max(n_mn,lf);
n_mx=min(n_mx,rt);
if(rev) k[y]=kk,b[y]=bb;
}
}
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("my.out","w",stdout);
#endif
int i,x,y,z;
n=rd(),m=rd();
for(i=1;i<=n;i++) fir[i]=rd();
for(i=1;i<=m;i++){
x=rd(),y=rd(),z=rd();
z=fir[x]+fir[y]-z;
addedge(x,y,z);
addedge(y,x,z);
}
for(i=1;i<=n;i++)
if(!vis[i]){
n_mn=0;
n_mx=fir[i];
n_k=0;
n_b=0;
k[i]=1;
b[i]=0;
bfs(i);
if(n_k<0){
mn+=n_mx*n_k+n_b;
mx+=n_mn*n_k+n_b;
}
else{
mn+=n_mn*n_k+n_b;
mx+=n_mx*n_k+n_b;
}
}
printf("%lld %lld\n",mn,mx);
return 0;
}
bzoj 2801 [Poi2012]Minimalist Security 设一个,求出所有的更多相关文章
- 【BZOJ2801】[Poi2012]Minimalist Security BFS
[BZOJ2801][Poi2012]Minimalist Security Description 给出一个N个顶点.M条边的无向图,边(u,v)有权值w(u,v),顶点i也有权值p(i),并且对于 ...
- bzoj 2797 [Poi2012]Squarks 枚举一个,推出所有
题目大意 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj. 现在所有取法共n*(n-1)/2个和,要你求出X1,X2,...Xn. 输出所有满足条件 ...
- BZOJ_2801_[Poi2012]Minimalist Security_dfs树+特判+乱搞
BZOJ_2801_[Poi2012]Minimalist Security_dfs树+特判+乱搞 Description 给出一个N个顶点.M条边的无向图,边(u,v)有权值w(u,v),顶点i也有 ...
- [POI2012] BEZ-Minimalist Security
一张n个点m条边的无向图,有点权有边权都是非负,且每条边的权值小于等于两个顶点的权值和,现在要将每个点减一个非负整数使得每条边权等于两个顶点的点权和,问最大修改代价和最小修改代价 思路神的一匹,完全想 ...
- 一个字符串中可能包含a~z中的多个字符,如有重复,如String data="aavzcadfdsfsdhshgWasdfasdf",求出现次数最多的那个字母及次数,如有多个重复的则都求出。
主要掌握String中的方法 char[] toCharArray() 将此字符串转换为一个新的字符数组. int indexOf(String str) 返回 ...
- 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则求出w的后n-1位的数。
描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则求出w的后n-1位的数. 输入 第一行为M,表示测试数据组数.接下来M行,每行包含一个测试数据. 输出 ...
- python练习题,写一个方法 传进去列表和预期的value 求出所有变量得取值可能性(例如list为[1,2,3,4,5,6,12,19],value为20,结果是19+1==20只有一种可能性),要求时间复杂度为O(n)
题目:(来自光荣之路老师)a+b==valuea+b+c=valuea+b+c+d==valuea+b+c+d+...=valuea和b....取值范围都在0-value写一个方法 传进去列表和预期得 ...
- 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数
出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...
- 黑马基础阶段测试题:定义一个int类型的数组,数组中元素为{5,7,3,9,4}。求出数组中的最小值,并判断最小值是否为偶数,如果是偶数则输出“最小值为偶数”,如果不是偶数则输出“最小值为奇数”。打印如下:
package com.swift; import java.util.Arrays; public class ArrayTest { public static void main(String[ ...
随机推荐
- 通过脚本批量添加AD用户
1.新建一个csv文件(逗号分隔的一种值文件) 内容为:放在C:\盘根目录下 test300 test300 .com test300 test301 test301 .com test301 tes ...
- Java JDBC的基本知识
CallableStatement接口——主要调用数据库中的存储过程 即为一种方法,可以调用, 传递参数 delimiter // //这里是改变执行操作语句的分隔符,也就是将SQL语句的&quo ...
- IE浏览器缓存问题解决方法(非常严重)
IE浏览器缓存问题解决方法整理 一.IE浏览器缓存的内容分析: IE浏览器会缓存网页中的GET和XHR的内容,并且在IE浏览器中如果请求方式是get方式的话,IE浏览器会进行识别,如果该get请求的u ...
- python中的内建函数
本文用作记录python中的内建函数及其功能,本文内容随时补充. 完整的内建函数及其说明参考官方文档: https://docs.python.org/3.5/library/functions ...
- python解析库之 XPath
1. XPath (XML Path Language) XML路径语言 2. XPath 常用规则: nodename 选取此节点的所有子节点 / 从当前 ...
- 笔记-python-实用-程序运算时间计算
方法1 import datetime starttime = datetime.datetime.now() #long running endtime = datetime.datetime.no ...
- win7下设置git客户端
msysgit官网: http://msysgit.github.io/ 下载msysgit http://msysgit.googlecode.com/files/Git-1.8.5.2-previ ...
- PYday16&17-设计模式\选课系统习题
1.设计模式:对程序做整体得规划设计,这样做是为了更好的实现功能,使代码的可扩展性更好有27种常见的设计模式.流行的设计模式参考书:GoF设计模式.大话设计模式设计模式是为了更好的实现模块间的解耦,便 ...
- 一个Work Stealing Pool线程池的实现
一.一般来说实现一个线程池主要包括以下几个组成部分: 1)线程管理器 :用于创建并管理线程池 . 2)工作线程 :线程池中实际执行任务的线程 . 在初始化线程时会预先创建好固定数目的线程在池中 ,这些 ...
- AtCoder Grand Contest 020
A - Move and Win Time limit : 1sec / Memory limit : 512MB Score : 300 points Problem Statement A gam ...