51nod1060(反素数&dfs)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060
题意:中文题诶~
思路:
这里用到了反素数的性质:
对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0 < i < x),都有g(i) < g(x),则称x为反素数。
性质:
No.1 一个反素数的质因子必然是从2开始连续的质数。
No.2 p=2^t1*3^t2*5^t3*7^t4…..必然t1>=t2>=t3>=….
然后按照性质dfs就好啦
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std; ll dir[]={, , , , , , , , , , , , , , , , };
ll x, gg=, cc=; void dfs(ll ans, ll cnt, int num, int b_num){//ans表当前积, cnt表当前可能总数, num表当前深度, b_num表上一个因子的个数
if(ans<x){
if(gg<cnt){
gg=cnt;
cc=ans;
}else if(gg==cnt&&ans<cc){
cc=ans;
}
for(int i=; i<=b_num; i++){
if(ans<=x/dir[num]){ //**如果用乘判断的话可能爆long long
ans*=dir[num];
dfs(ans, cnt*(i+), num+, i);
}else{
break;
}
}
}
} int main(void){
ios::sync_with_stdio(false), cin.tie(), cout.tie();
int t;
cin >> t;
while(t--){
cin >> x;
cc=, gg=;
dfs(, , , );
cout << cc << " " << gg << endl;
}
return ;
}
51nod1060(反素数&dfs)的更多相关文章
- hdu 4542 "小明系列故事——未知剩余系" (反素数+DFS剪枝)
传送门 参考资料: [1]:https://blog.csdn.net/acdreamers/article/details/25049767 题意: 输入两个数 type , k: ①type = ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- 1060 最复杂的数(反素数玄学dfs)
1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...
- Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】
题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...
- Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925
题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]
[luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...
- Prime & 反素数plus
题意: 求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式 SOL: 模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗... 咦数据怎么这么大,恩搞个高精吧... 于是T了 ...
- BZOJ 3085: 反质数加强版SAPGAP (反素数搜索)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3085 题意:求n(<=10^100)之内最大的反素数. 思路: 优化2: i ...
- ZOJ-2562 More Divisors 反素数
题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个. 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4 ...
随机推荐
- 用JAVA 的for循环输出 菱形
public class For{ public static void main(String[] args){ //首先.把菱形看成上下两部分,上五下四,所以,第一个for循环有5次,第二个for ...
- display:inline
一.基本介绍 它可以让行内显示为块的元素,变为行内显示,例如 <div> DIV1 </div> <div> DIV2 </div> 这里DIV1和DI ...
- 特殊例子--JavaScript代码实现图片循环滚动效果
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Scipy.sparse矩阵的存储,读取和转化为稠密矩阵
import numpy as np import scipy.sparse as sp m = sp.lil_matrix((7329,7329)) np.save(path,m) #用numpy的 ...
- java参数传递------真心是值传递
未完待续 不同意的请尽管去深入看一下. 对象是引用传递没错,参数传递是值传递.
- kvm初体验之八:调整vm的vcpu, memory, disk大小
假设host上创建的vm的名字为vm1. 1. 查看vm1的domain information [root@tanghuimin thm]# virsh dominfo vm1 Id: 10 Nam ...
- Java微信公众平台开发_05_微信网页授权
GitHub源码:https://github.com/shirayner/weixin_gz 一.本节要点 1.网页授权回调域名 登录微信公众平台后台, 开发 - 接口权限 - 网页服务 - 网页帐 ...
- overflow:hidden真的失效了吗?
项目中常常有同学遇到这样的问题,现象是给元素设置了overflow:hidden,但超出容器的部分并没有被隐藏,难道是设置的hidden失效了吗? 其实看似不合理的现象背后都会有其合理的解释. 我们知 ...
- linkedhashSet和hashSet和TreeSet的区别(转)
Set接口Set不允许包含相同的元素,如果试图把两个相同元素加入同一个集合中,add方法返回false.Set判断两个对象相同不是使用==运算符,而是根据equals方法.也就是说,只要两个对象用eq ...
- NO0:重新拾起C语言
因工作所需,重新捡起C语言,之前在学校里有接触过,但现在已经忘的一干二净了,现决定重新开始学习,为工作,为生活. 以<标准 C程序设计 第5版>的课程进行基础学习,同时以另外两本书为辅助, ...