传送

一道线段树板子(最简单的)

似乎之前在培训里写过线段树的样子?不记得了

何为线段树?

一般就是长成这样的树,树上的每个节点代表一个区间。线段树一般用于区间修改,区间查询的问题。

我们如何种写一棵线段树?

线段树包含:

1.建树

2.区间修改

3.区间查询与懒标记下传

---------------------------------------------------------------------

一些定义:

sum[k]:节点k所代表的区间的区间和(k是节点编号)

val[i]:在1到n的区间中,点i的权值

laz[k]:在k节点上打的懒标记

1.建树

从根节点开始,递归分别建左子树和右子树,当l=r时,sum[k]=val[l].我们注意到,对于每个不是叶子的节点来说,它的sum值为它的左二字+它的右儿子。同时线段树是一颗二叉树,所以节点k的左儿子的编号就是k*2,右儿子是k*2+1。所以,sum[k]=sum[k*2]+sum[k*2+1]。

2.区间修改

如果一个区间[l,r]要进行修改,那么与[l,r]有交集的节点都要修改。考虑到与[l,r]有交集的节点数为log(r-l+1)(如果出错欢迎指正),如果直接修改每个点,则复杂度会很高,况且修改了以后还不一定会被查询到。为了降低复杂度,我们采用懒惰的思想。这时候,我们就有了懒标记。

在节点k上打上懒标记,代表k的子树中所有节点都加上laz[k],k节点的sum变为真实值。不过暂时先不真的在左右儿子节点加,如果查询到了,再加。这是待会要讲的标记下传。

所以,对于区间修改来说,我们唯一要做的就是找到被修改区间完全包含的区间,在这个节点上打个懒标记,然后维护一下打上标记的节点的sum(sum[k]+=laz[k]*(r-l+1)),就ok了。

如果当前区间并没有完全被包含,则继续递归寻找。判断它的左右儿子哪个与修改区间有交集,就修改哪个儿子,直到有完全被包含的区间出现。同时,对于当前的这个节点来说,还是要维护sum,sum[k]=sum[k*2]+sum[k*2+1](就是当前节点的sum=左儿子的sum+右儿子的sum)

3.区间查询与懒标记下传

当区间查询的时候,就不能再懒下去了(该干活了),这时候,我们就要把laz[k]扔给它的左儿子,右儿子,让他们变成真实值。

当然,如果没有懒标记(laz[k]=0),那就直接结束了,就不管了。

如果当前区间并不完全被包含在查询区间里面,则递归查询。(要先懒标记下传)看它的哪个儿子与被查询区间有交集,就递归哪个儿子。

也正是因为上述原因,懒标记一次只下传一层(没有传到而要用到的节点会在递归查询中下传到)

在懒标记下传中,把懒标记传给它的左右儿子(不管是否与被查询区间有交集)。让它左右儿子的laz加上laz[k],然后维护他左右儿子的sum。(sum[2*k]+=laz[k]*(mid-l+1),sum[2*k+1]=laz[k]*(r-mid))

这样一棵线段树的基本操作就讲完辣。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const long long N=;//小心毒瘤数据范围
long long n,m,val[N*],sum[N*],laz[N*];//注意数组大小
long long read()//读入long long(防毒瘤数据)
{
char ch=getchar();
int x=;bool f=;
while(ch<''||ch>'')
{
if(ch=='-')f=;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=(x<<)+(x<<)+(ch^);
ch=getchar();
}
if(f)x=-x;
return x;
}
int read2()//读入int(为了和函数的参数相匹配)
{
char ch=getchar();
int x=;bool f=;
while(ch<''||ch>'')
{
if(ch=='-')f=;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=(x<<)+(x<<)+(ch^);
ch=getchar();
}
if(f)x=-x;
return x;
}
void zj(int k,int l,int r,int v)//标记下传时候的增加(其实可以写进标记下传函数里面)
{
laz[k]+=v;
sum[k]+=v*(r-l+);
}
void pushdown(int k,int l,int r)//标记下传
{
if(laz[k]==)return ;
long long mid=(l+r)>>;
zj(k<<,l,(int)mid,laz[k]);//位运算优化常数
zj(k<<|,(int)mid+,r,laz[k]);
laz[k]=;
}
void add(int k,int l,int r,int x,int y,int v)//将[x,y]这段区间加上v,l,r为当前递归到的节点代表的区间的左,右端点,k为当前节点编号
{ if(l>=x&&r<=y)
{
laz[k]+=v;
sum[k]+=v*(r-l+);
return;
}
long long mid=(l+r)>>;
pushdown(k,l,r);
if(x<=mid)
add(k<<,l,(int)mid,x,y,v);
if(mid<y)
add(k<<|,(int)mid+,r,x,y,v);
sum[k]=sum[k<<]+sum[k<<|];// 维护和!!!
return;
}
long long query(int k,int l,int r,int x,int y)//查询
{
if(l>=x&&r<=y)//[l,r]被[x,y]完全覆盖
{
return sum[k];
}
long long mid=(l+r)>>,ans=;
pushdown(k,l,r);
if(x<=mid)//判断儿子是否有交集
ans+=query(k<<,l,(int)mid,x,y);
if(mid<y)
ans+=query(k<<|,(int)(mid+),r,x,y);
return ans;
}
void build(int k,int l,int r)//建树
{
if(l==r)
{
sum[k]=val[l];
return;
}
long long mid=(l+r)>>;
build(k<<,l,(int)mid);
build(k<<|,(int)(mid+),r);
sum[k]=sum[k<<]+sum[k<<|];
return;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
val[i]=read();
build(,,n);
for(int i=;i<=m;i++)
{
int cz,x,y;
cz=read2();x=read2();y=read2();
if(cz==)//修改
{
int k=read2();
add(,,n,x,y,k);
}
else//查询
{
printf("%lld\n",query(,,n,x,y));
}
}
return ;
}

线段树2(添加乘法操作,更带感)

线段树板子1(洛谷P3372)的更多相关文章

  1. 洛谷P3372/poj3468(线段树lazy_tag)(询问区间和,支持区间修改)

    洛谷P3372 //线段树 询问区间和,支持区间修改 #include <cstdio> using namespace std; struct treetype { int l,r; l ...

  2. 【线段树】洛谷 P3372 【模板】线段树 1

    动态开结点线段树板子. #include<cstdio> using namespace std; typedef long long ll; ll sumv[400005],delta[ ...

  3. 线段树入门详解,洛谷P3372 【模板】线段树 1

    关于线段树: 本随笔参考例题      P3372 [模板]线段树 1 所谓线段树就是把一串数组拆分成一个一个线段形成的一棵树. 比如说像这样的一个数组1,2,3,4,5: 1 ~ 5 /       ...

  4. 线段树--线段树【模板1】P3372

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入格式 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. 第二行包含 ...

  5. 洛谷P3372 【模板】线段树 1

    P3372 [模板]线段树 1 153通过 525提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 [模板]线段树1(AAAAAAAAA- [模板]线段树1 洛谷 ...

  6. 洛谷P3372线段树1

    难以平复鸡冻的心情,虽然可能在大佬眼里这是水题,但对蒟蒻的我来说这是个巨大的突破(谢谢我最亲爱的lp陪我写完,给我力量).网上关于线段树的题解都很玄学,包括李煜东的<算法竞赛进阶指南>中的 ...

  7. 洛谷P3372线段树模板1——线段树

    题目:https://www.luogu.org/problemnew/show/P3372 线段树模板. 代码如下: #include<iostream> #include<cst ...

  8. 洛谷 P3372 【模板】线段树 1

    P3372 [模板]线段树 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别 ...

  9. 洛谷—— P3372 【模板】线段树 1

    P3372 [模板]线段树 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别 ...

随机推荐

  1. ajax异步加载分页评论带点赞功能

    <script type="text/javascript" src="__ROOT__/Index/Tpl/Public/js/jquery.js"&g ...

  2. 搜索专题: HDU1429胜利大逃亡

    胜利大逃亡(续) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  3. 分布式理论: CAP、BASE (转)

    分布式系统的CAP理论是由Eric Brewer于1999年首先提出的,又被称作布鲁尔定理(Brewer's theorem),CAP是对Consistency(一致性).Availability(可 ...

  4. webpack4+vue打包简单入门

    前言 最近在研究使用webpack的使用,在查阅了数篇文章后,学习了webpack的基础打包流程. 本来就可以一删了之了,但是觉得未免有点可惜,所以就有了这篇文章,供大家参考. webpack打包的教 ...

  5. ubuntu系统更新命令

    一.图形界面更新升级 1.点击”系统设置“,打开“软件和更新”,切到“更新”栏目进行更新设置. 2.可以通过软件更新器进行更新升级自己想要更新的 二.命令方式更新升级 1.先解锁 ps -e|grep ...

  6. 攻防世界--CGfsb238

    测试文件:https://adworld.xctf.org.cn/media/task/attachments/5982010c172744c8a1c93c24b5200b21 1.格式化字符串漏洞 ...

  7. 流畅的Python (Fluent Python) —— 前言

    本书重点: 这本书并不是一本完备的 Python 使用手册,而是会强调 Python 作为编程语言独有的特性,这些特性或者是只有 Python 才具备的,或者是在其他大众语言里很少见的. Python ...

  8. rest_framework框架的分页

    class MyPageNumberPagination(PageNumberPagination): page_size = 1 page_query_param = 'page' page_siz ...

  9. Beta冲刺-(2/3)

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1/ 这个作业要求在哪里 https://edu.cnbl ...

  10. python 写matlab中的加性高斯白噪声AWGN

    定义 原始信号:x 噪声信号:n 信噪比:SNR 信号长度:N def wgn(x, snr): snr = 10**(snr/10.0) xpower = np.sum(x**2)/len(x) n ...