洛谷 P1168 中位数(优先队列)
题目链接
https://www.luogu.org/problemnew/show/P1168
解题思路
这个题就是求中位数,但是暴力会tle,所以我们用一种O(nlogn)的算法来实现。
这里用到了两个堆,一个是大根堆,一个是小根堆,大根堆中的数总是小于小根堆中的数,且两个堆之间的数量最多差一。
见图(自己手画的,不太美观,请见谅):

就是这个样子,让两个堆的堆顶凑到一块比较容易理解。
就这样,每一次的答案就是元素个数较多的堆的堆顶。
AC代码
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int maxn=;
int n;
priority_queue<int> q1;
priority_queue<int,vector<int>,greater<int> > q2;
int main(){
cin>>n;
for(int i=;i<=n;i++){
int a;
scanf("%d",&a);
int s1=q1.size();
int s2=q2.size();
if(s1==) q1.push(a);
else{
int a1=q1.top();
if(a<=a1){
q1.push(a);
s1++;
}
else{
q2.push(a);
s2++;
}
}
while(s1-s2>){
q2.push(q1.top());
q1.pop();
s1--;
s2++;
}
while(s2-s1>=){
s2--;
s1++;
q1.push(q2.top());
q2.pop();
}
if(i%==) printf("%d\n",q1.top());
}
return ;
}
洛谷 P1168 中位数(优先队列)的更多相关文章
- 洛谷——P1168 中位数
P1168 中位数 题目描述 给出一个长度为NN的非负整数序列$A_i$,对于所有1 ≤ k ≤ (N + 1),输出$A_1, A_3, …, A_{2k - 1}A1,A3,…,A2k−1 ...
- 洛谷P1168 中位数——set/线段树
先上一波链接 https://www.luogu.com.cn/problem/P1168 这道题我们有两种写法 第一种呢是线段树,我们首先需要将原本的数据离散化,线段树维护的信息就是区间内有多少个数 ...
- 洛谷P1168 中位数
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数.[color=red]即[/color] ...
- [洛谷P1168]中位数(Splay)/(主席树)
Description 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], -, A[2k - 1]的中位数.即前1,3,5,--个数的 ...
- 洛谷 P1168 中位数
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.[color=red]即[/color] ...
- 洛谷—— P1168 中位数
https://www.luogu.org/problem/show?pid=1168 题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], ...
- 洛谷P1168中位数
传送门啦 基本思想就是二分寻找答案,然后用树状数组去维护有几个比这个二分出来的值大,然后就没有了: 数据要离散,这个好像用map也可以,但是不会: 那怎么离散呢? 我们先把a数组读入并复制给s数组,然 ...
- AC日记——中位数 洛谷 P1168
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数.[color=red]即[/color] ...
- P1168 中位数 (优先队列,巧解)
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1,3,5,……个数的中位数. 输入 ...
随机推荐
- Python之路-numpy模块
这里是首先需要安装好Anaconda Anaconda的安装参考Python之路-初识python及环境搭建并测试 配置好环境之后开始使用Jupyter Notebook 1.打开cmd,输入 jup ...
- SwiftUI 里的 swift 闭包总结
创建 UI 时的闭包使用 在 SwiftUI 里闭包出现的频率特别高,这里我重新梳理了下闭包的定义. 关于闭包 闭包表达式语法的一般形式如下: {(parameters) -> return t ...
- linux测试 Sersync 是否正常
[root@SERSYNC web]# for i in {1..10000};do echo 123456 > /data/web/$i &>/dev/null;do ne [r ...
- linux机器间建立信任关系
linux机器间建立信任关系 如何建立信任关系 在shell脚本中,需要使用scp命令将本地的文件复制到另一台机器中备份.但通常执行scp命令后都需要输入用户密码,这样在定时自动执行shell脚本中就 ...
- linux7 grub配置文件 linux6 grub配置文件
在 grub 的 kernel 配置后面,添加 acpi_pad.disable=1 重启机器之后,开机就不会自动加载 acpi_pad 模块 一:linux6 [root@node2 ~]# cat ...
- dd hdparm 速度不一致
https://www.cnblogs.com/yinzhengjie/p/9935478.html hparm # 它用来在基于Linux的系统上获取或设置硬盘参数,包括测试读性能以及缓存性 ...
- 【串线篇】spring boot对静态资源的映射规则
WebMvcAutoConfiguration的内部类 WebMvcAutoConfigurationAdapter 其中ResourceProperties点进去 其中addResourceHand ...
- POJ 3784 Running Median (动态中位数)
题目链接:http://poj.org/problem?id=3784 题目大意:依次输入n个数,每当输入奇数个数的时候,求出当前序列的中位数(排好序的中位数). 此题可用各种方法求解. 排序二叉树方 ...
- 卷积神经网络(Text--cnn)(知识点整理)
参考:http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ 独热编码(one- ...
- ht-1 jdk calendar类
package calendardemo; import java.util.Calendar; public class CalendarDemo { /** * @param args */ pu ...