cluster KMeans need preprocessing scale????

Out:
n_digits: 10, n_samples 1797, n_features 64
__________________________________________________________________________________
init time inertia homo compl v-meas ARI AMI silhouette
k-means++ 0.30s 69432 0.602 0.650 0.625 0.465 0.598 0.146
random 0.23s 69694 0.669 0.710 0.689 0.553 0.666 0.147
PCA-based 0.04s 70804 0.671 0.698 0.684 0.561 0.668 0.118
__________________________________________________________________________________
print(__doc__) from time import time
import numpy as np
import matplotlib.pyplot as plt from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits()
data = scale(digits.data) n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d"
% (n_digits, n_samples, n_features)) print(82 * '_')
print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') def bench_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f'
% (name, (time() - t0), estimator.inertia_,
metrics.homogeneity_score(labels, estimator.labels_),
metrics.completeness_score(labels, estimator.labels_),
metrics.v_measure_score(labels, estimator.labels_),
metrics.adjusted_rand_score(labels, estimator.labels_),
metrics.adjusted_mutual_info_score(labels, estimator.labels_),
metrics.silhouette_score(data, estimator.labels_,
metric='euclidean',
sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10),
name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10),
name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the
# kmeans algorithm only once with n_init=1
pca = PCA(n_components=n_digits).fit(data)
bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1),
name="PCA-based",
data=data)
print(82 * '_') # #############################################################################
# Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10)
kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ.
h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1],
marker='x', s=169, linewidths=3,
color='w', zorder=10)
plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n'
'Centroids are marked with white cross')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()
It depends on your data.
If you have attributes with a well-defined meaning. Say, latitude and longitude, then you should not scale your data, because this will cause distortion. (K-means might be a bad choice, too - you need something that can handle lat/lon naturally)
If you have mixed numerical data, where each attribute is something entirely different (say, shoe size and weight), has different units attached (lb, tons, m, kg ...) then these values aren't really comparable anyway; z-standardizing them is a best-practise to give equal weight to them.
If you have binary values, discrete attributes or categorial attributes, stay away from k-means. K-means needs to compute means, and the mean value is not meaningful on this kind of data.
from:https://stats.stackexchange.com/questions/89809/is-it-important-to-scale-data-before-clustering
Importance of Feature Scaling
Feature scaling though standardization (or Z-score normalization) can be an important preprocessing step for many machine learning algorithms. Standardization involves rescaling the features such that they have the properties of a standard normal distribution with a mean of zero and a standard deviation of one.
While many algorithms (such as SVM, K-nearest neighbors, and logistic regression) require features to be normalized, intuitively we can think of Principle Component Analysis (PCA) as being a prime example of when normalization is important. In PCA we are interested in the components that maximize the variance. If one component (e.g. human height) varies less than another (e.g. weight) because of their respective scales (meters vs. kilos), PCA might determine that the direction of maximal variance more closely corresponds with the ‘weight’ axis, if those features are not scaled. As a change in height of one meter can be considered much more important than the change in weight of one kilogram, this is clearly incorrect.
To illustrate this, PCA is performed comparing the use of data with StandardScaler applied, to unscaled data. The results are visualized and a clear difference noted. The 1st principal component in the unscaled set can be seen. It can be seen that feature #13 dominates the direction, being a whole two orders of magnitude above the other features. This is contrasted when observing the principal component for the scaled version of the data. In the scaled version, the orders of magnitude are roughly the same across all the features.
The dataset used is the Wine Dataset available at UCI. This dataset has continuous features that are heterogeneous in scale due to differing properties that they measure (i.e alcohol content, and malic acid).
The transformed data is then used to train a naive Bayes classifier, and a clear difference in prediction accuracies is observed wherein the dataset which is scaled before PCA vastly outperforms the unscaled version.
from:http://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
cluster KMeans need preprocessing scale????的更多相关文章
- 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...
- 第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 def initcenter(x,k): r ...
- 【原】KMeans与深度学习模型结合提高聚类效果
这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id goods_name goods_amount 男士手袋 1882.0 淑女装 2491.0 女士手袋 345.0 ...
- 【原】KMeans与深度学习自编码AutoEncoder结合提高聚类效果
这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id goods_name goods_amount 男士手袋 1882.0 淑女装 2491.0 女士手袋 345.0 ...
- RFM模型的变形LRFMC模型与K-means算法的有机结合
应用场景: 可以应用在不同行业的客户分类管理上,比如航空公司,传统的RFM模型不再适用,通过RFM模型的变形LRFMC模型实现客户价值分析:基于消费者数据的精细化营销 应用价值: LRFMC模型构建之 ...
- 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析
# 导入第三方包import pandas as pdimport numpy as np import matplotlib.pyplot as pltfrom sklearn.cluster im ...
- 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类
@(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...
- Kmeans应用
1.思路 应用Kmeans聚类时,需要首先确定k值,如果k是未知的,需要先确定簇的数量.其方法可以使用拐点法.轮廓系数法(k>=2).间隔统计量法.若k是已知的,可以直接调用sklearn子模块 ...
- Scikit-Learn模块学习笔记——数据预处理模块preprocessing
preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...
随机推荐
- 在Mac上为自己手动编译安装一套PHP7的开发环境
首先你得去官网下载php7 beta1的版本 这里由于我是在mac上安装,所以就去下载linux相关的版本,地址也直接附上了php7 beta1windows版的官方也有发布详情猛戳:这里 解压安装包 ...
- bootstrap input 加了 disabled 后台竟然接受不到值
下午做了一个input 值需要不可改变.在input属性中加入了 disabled .在后台接受 var_dump($_POST); 竟然看不到值. <input type="t ...
- str_replace 替换 小技巧
// $id:1 $id:1,2,3,4,5 public function delete($id) { // 把1替换掉不允许删除ID为1的角色 在前面分别加了 , 号 ...
- Java学习笔记之equals和Objects.equals
equals 相信大家就知道,就是比较,我们平时也会在自己定义的类中加入自己重写的equals用来比较两个类是否相同,例如这样 public class Person { private String ...
- onInterceptTouchEvent和onTouchEvent调用时序(转)
onInterceptTouchEvent和onTouchEvent调用时序 onInterceptTouchEvent()是ViewGroup的一个方法,目的是在系统向该ViewGroup及其各个c ...
- atom常用插件安装
安装插件方法: File -Settings -Install 在搜索框里搜索你想要的插件,出来之后 点击install ,下图以 linter-selint 为例 ATOM常用插件推荐 simpli ...
- ios 10 sticker pack application
看了WWDC2016直播,我们发现变得谨慎而开放的苹果在新一版四大平台系统中展示了很多变化,当然重中之重还是伟大的iOS.通过试用iOS10beta版,除了长大了的更强大的Siri主要感受到iMess ...
- 优化tomcat启动速度
1.去掉不需要的jar包,这样tomcat在启动时就可以少加载jar包里面的class文件. 2.跳过一些与TLD files.注解.网络碎片无关的jar包,通过在conf/catalina.prop ...
- python login form
import time from selenium import webdriver browser = webdriver.Chrome() wait_time = 1 USER = 'xl.fen ...
- 使用memcache进行账号验证服务
适用环境是需要频繁进行账号和请求合法性验证的地方 大致思路: 1.登陆时,服务器端接收一个账号和密码,还可以再加上用户的ip等信息通过md5等加密算法计算出一个定长的字符串作为用来验证的token 2 ...