果然如Miracle学长所说。。。调了一天。。。qwq。。还是过不了线下的Hack

upd after 40min:刚刚过了


就是多了一个判无解的操作。。。

当系数都为0,且常数项不为0时,即为无解。

当找到自由元时,不能跳过这一行。。。否则会被Hack,见洛谷讨论

#include<cstdio>
#include<iostream>
#include<cmath>
#define R register int
using namespace std;
const double eps=1E-;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
long double a[][];
int n,m,k;
inline bool ck0(double x) {return x<eps&&x>-eps;}
inline void Gauss() {
for(R i=,pos=;i<=n&&pos<=n;++i) { R p;
for(p=pos;p<=n&&ck0(a[p][i]);++p) ;
if(p==n+) continue;
if(pos!=p) for(R j=;j<=n+;++j) swap(a[pos][j],a[p][j]);
for(R j=pos+;j<=n;++j) if(!ck0(a[j][i])){
register long double t=a[j][i]/a[pos][i];
for(R k=;k<=n+;++k) a[j][k]-=a[pos][k]*t;
} ++pos;
} register bool flg1=false,flg2=false;
for(R i=;i<=n;++i) { R j=;
while(ck0(a[i][j])&&j<=n+) ++j;
if(j==n+) flg1=true;
if(j>n+) flg2=true;
} if(flg1) {putchar('-'),putchar(''); return ;}
if(flg2) {putchar(''); return ;}
for(R i=n;i>=;--i) {
for(R j=n;j>=i+;--j) a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
} for(R i=;i<=n;++i) if(ck0(a[i][n+])) printf("x%d=0\n",i); else printf("x%d=%.2Lf\n",i,a[i][n+]);
}
signed main() {
n=g(); for(R i=;i<=n;++i) for(R j=;j<=n+;++j) a[i][j]=g(); Gauss(); //while(1);
}

2019.05.13

Luogu P2455 [SDOI2006]线性方程组 真•高斯消元板子的更多相关文章

  1. Luogu2455 [SDOI2006]线性方程组 (高斯消元)

    模板特殊情况没exit(0) $\longrightarrow$60 了一下午 //#include <iostream> #include <cstdio> #include ...

  2. luogu P2962 [USACO09NOV]灯Lights 高斯消元

    目录 题目链接 题解 题目链接 luogu P2962 [USACO09NOV]灯Lights 题解 可以折半搜索 map合并 复杂度 2^(n / 2)*logn 高斯消元后得到每个点的翻转状态 爆 ...

  3. 【Luogu】P3317重建(高斯消元+矩阵树定理)

    题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...

  4. 【luogu P2455 [SDOI2006]线性方程组】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2455 无解:最后一列对应元素不为0,前面全是0. 无穷解:一行全是0. 嗯...在消元过程中不要直接拿矩阵元 ...

  5. luogu 3389 【模板】高斯消元

    大概就是对每一行先找到最大的减小误差,然后代入消元 #include<iostream> #include<cstdio> #include<cstring> #i ...

  6. P2455 [SDOI2006]线性方程组

    P2455 [SDOI2006]线性方程组 真\(\cdot\)高斯消元模板题 由于各种hack数据被造出来~码量突增~,其实也就多了二三十行 将每行系数消到最多有一个非0数 特殊情况: 在过程同时 ...

  7. hdu 3359 Kind of a Blur (高斯消元 浮点型)

    题目链接 题意: H * W (W,H <= 10) 的矩阵A的某个元素A[i][j],从它出发到其他点的曼哈顿距离小于等于D的所有值的和S[i][j]除上可达点的数目,构成了矩阵B.给定矩阵B ...

  8. UVALive - 3490 Generator (AC自动机+高斯消元dp)

    初始有一个空串s,从前n个大写字母中不断随机取出一个字母添加到s的结尾,出现模式串t时停止,求停止时s的长度期望. 这道题解法不唯一,比较无脑的方法是对模式串t建一个单串AC自动机,设u为自动机上的一 ...

  9. [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]

    题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...

随机推荐

  1. bzoj 2969: 矩形粉刷 概率期望

    题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...

  2. POJ3621Sightseeing Cows

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10595   Accepted: 3632 ...

  3. pytorch 调用forward 的具体流程

    forward方法的具体流程: 以一个Module为例:1. 调用module的call方法2. module的call里面调用module的forward方法3. forward里面如果碰到Modu ...

  4. 图形化升级单机oracle 11.2.0.4 到 12.2.0.1

    1. 讲补丁包上传到 Oracle server ,解压.安装 [oracle@11g tmp]$ unzip linuxx64_12201_database.zip 2. 检查当前版本 SQL> ...

  5. bzoj 5120 无限之环 & 洛谷 P4003 —— 费用流(多路增广SPFA)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5120 https://www.luogu.org/problemnew/show/P4003 ...

  6. 串口编程3:使用串口读取GPS信息

    关于GPS的使用,参考. 本文主要参考的博客,在此表示感谢!!! 主函数 主函数gps_main.c,这里便涉及到了串口的打开,读操作,以及调用了串口设置函数: #include <stdio. ...

  7. n文件的上传和下载,struts2和springmvc

    首先,struts2的上传下载的配置 因为struts2是配置的上传的拦截器,很简单的步揍就可以上传, 首先是配置struts的action映射 <!-- 4. 修改上传文件的最大大小为30M ...

  8. 【转】 Pro Android学习笔记(二二):用户界面和控制(10):自定义Adapter

    目录(?)[-] 设计Adapter的布局 代码部分 Activity的代码 MyAdapter的代码数据源和构造函数 MyAdapter的代码实现自定义的adapter MyAdapter的代码继续 ...

  9. python 基础 列表生成式

    data = {'a':'abc';'b':'bac','c':'cba'} [v for k,v in data] 结果 ['abc','bca','cba'] 格式 [x for x in  内容 ...

  10. C笔试题(一)

    a和b两个整数,不用if, while, switch, for,>, <, >=, <=, ?:,求出两者的较大值. 答案: int func(int a, int b) { ...