题目链接

LOJ:https://loj.ac/problem/2027

洛谷:https://www.luogu.org/problemnew/show/P4336

Solution

这题很像[ZJOI2016]小星星,注意到如果没有每个边集选一条边的限制的话,直接就是一个果的\(\rm matrix \ tree\)定理。

那么有这个限制我们算出来的生成树个数就会有不合法的情况,即一个边集里选多条边,或者说没有用到\(n-1\)个边集。

那么我们可以算出\(f[s]\)表示至考虑\(s\)状态的这些边集,随便选的生成树个数,那么这些方案最多也就选到\(s\)这些边集。

我们可以参照上题进行容斥,对每个\(f\)乘个\((-1)^{n-1-cnt(s)}\)的系数加起来就好了。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long #define pii pair<int,int >
#define vec vector<int > #define pb push_back
#define mp make_pair
#define fr first
#define sc second #define FOR(i,l,r) for(int i=l, i##_r=r;i<=i##_r;i++) const int maxn = 18;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 1e9+7; int add(int x,int y) {return x+y>=mod?x+y-mod:x+y;}
int del(int x,int y) {return x-y<0?x-y+mod:x-y;}
int mul(int x,int y) {return 1ll*x*y-1ll*x*y/mod*mod;} int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=mul(a,a)) if(x&1) res=mul(res,a);
return res;
} int inv(int x) {return qpow(x,mod-2);} int n,r[maxn][maxn],a[18][400],b[18][400],ans; void ins(int u,int v) {r[u][u]++,r[v][v]++,r[u][v]--,r[v][u]--;} int calc() {
int tmp=1;
FOR(i,1,n-1) {
if(!r[i][i])
FOR(j,i+1,n-1) if(r[j][i]) {
FOR(k,1,n-1) swap(r[i][k],r[j][k]);tmp=-tmp;break;
}
FOR(j,1,i-1) {
int res=mul(r[i][j],inv(r[j][j]));
FOR(k,1,n-1) r[i][k]=del(r[i][k],mul(res,r[j][k]));
}
}if(tmp==-1) tmp=mod-1;
FOR(i,1,n-1) tmp=mul(tmp,r[i][i]);
return tmp;
} void solve(int s) {
memset(r,0,sizeof r);
FOR(i,1,n-1) if(s&(1<<(i-1)))
FOR(j,1,a[i][0]) ins(a[i][j],b[i][j]);
ans=((n-1-__builtin_popcount(s))&1?del:add)(ans,calc());
} int main() {
read(n);
FOR(i,1,n-1) {
read(a[i][0]);
FOR(j,1,a[i][0]) read(a[i][j]),read(b[i][j]);
}FOR(s,1,(1<<(n-1))-1) solve(s);
write(ans);
return 0;
}

[LOJ2027] [SHOI2016] 黑暗前的幻想乡的更多相关文章

  1. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  2. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  3. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  4. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  5. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  6. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

  7. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  8. BZOJ4596: [Shoi2016]黑暗前的幻想乡

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...

  9. [SHOI2016]黑暗前的幻想乡

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...

随机推荐

  1. 问题:oracle CLOB类型;结果:oracle中Blob和Clob类型的区别

    BLOB和CLOB都是大字段类型,BLOB是按二进制来存储的,而CLOB是可以直接存储文字的.其实两个是可以互换的的,或者可以直接用LOB字段代替这两个.但是为了更好的管理ORACLE数据库,通常像图 ...

  2. eclipse利用mybatis-generator生成代码

    由于mybatis是半自动的ORM框架,表到POJO的映射可以由mybatis-generator完成,映射文件也可以由它生成,下面介绍生成步骤: 1.新建maven项目:File->Other ...

  3. SSH简单搭建

    本项目使用Struts2+spring3+hibernate3: 第一步:引入jar包,具体需要哪些包根据实际情况加入.注意:把jar包导入后需要对所有包Add to Build Path;然后对工程 ...

  4. springBoot数据库jpa+对接mybatis

    1  spring Data jpa hibernate引领数据访问技术,使用orm对象关系映射来进行数据库访问,通过模型和数据库进行映射,通过操作对象实现对数据库操作,把数据库相关操作从代码中独立出 ...

  5. PHP数组函数的使用

    1.array_walk($arr, $func, [$data])  使用用户自定义的函数遍历所有的元素,返回true/false $func是一个函数名 默认会传入两个参数 第一个 $arr的值, ...

  6. solr注意事项-solrconfig中的默认搜索域会覆盖schema中的默认搜索域,注意copyfeild中被corp的字段搜索

    结论一:solrconfig.xml的默认搜索配置权限高于schema.xml中的默认搜索配置! 配置1:solrconfig.xml文件中关于select的配置: <requestHandle ...

  7. REST API (更新文档)

    Elasticsearch的更新文档API准许通过脚本操作来更新文档.更新操作从索引中获取文档,执行脚本,然后获得返回结果.它使用版本号来控制文档获取或者重建索引. 我们新建一个文档: 请求:PUT  ...

  8. mybatis项目报错:java.sql.SQLException: ORA-00911: 无效字符 解决方法

    如果你用java写程序访问数据库,出现这个问题:java.sql.SQLException: ORA-00911: 无效字符 at oracle.jdbc.driver.DatabaseError.t ...

  9. Ros学习——roslaunch

    roslaunch:启动定义在launch文件中的多个节点 1.launch文件解析 <launch> #以launch标签开头以表明这是一个launch文件 #两个节点分组并以'命名空间 ...

  10. 分布式锁1 Java常用技术方案【转载】

    前言:       由于在平时的工作中,线上服务器是分布式多台部署的,经常会面临解决分布式场景下数据一致性的问题,那么就要利用分布式锁来解决这些问题.所以自己结合实际工作中的一些经验和网上看到的一些资 ...