Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5608    Accepted Submission(s): 1972

Problem Description
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
 
Source
 

题目大意:给你n,表示城市个数,然后给你n个城市的坐标及该城市中的人口数量。让连接这n个城市用n-1条边连接,且距离和最短,距离越长花费越大。数字A表示,用魔法路连接的两个城市的人口的和,B表示除了该魔法路以外的其他路的长度和。求A/B的比率最小值是多少。魔法路没有路长。

解题思路:考虑让除了魔法路以外的路长和最小,那么我们可以从最小生成树中删除一条最长路径。枚举删除任意两点间的最长路,更新出最小比率。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<vector>
#include<math.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1010;
double cost[maxn][maxn];
struct Coor{
double x, y;
int peo;
}cors[maxn];
double distan(Coor a,Coor b){
double dx,dy;
dx = a.x - b.x;
dy = a.y - b.y;
return sqrt( dx*dx + dy*dy );
}
int vis[maxn], pre[maxn] ,used[maxn][maxn];
double maxcost[maxn][maxn], lowc[maxn];
double prim(int n){
memset(vis,0,sizeof(vis));
memset(used,0,sizeof(used));
for(int i = 0; i <= n; i++){
for(int j = 0; j <= n; j++){
maxcost[i][j] = 0;
}
}
// memset(maxcost,0,sizeof(maxcost));
// memset(lowc,0,sizeof(lowc));
double retsum = 0;
vis[0] = 1;
for(int i = 0; i < n; i++){
lowc[i] = cost[0][i];
pre[i] = 0;
}
for(int i = 1; i < n; i++){
int s = -1;
double minc = 1.0*INF;
for(int j = 0; j < n; j++){
if(!vis[j] && lowc[j] < minc){
minc = lowc[j];
s = j;
}
}
if(s == -1){
return -1;
}
retsum += minc;
int pa = pre[s];
vis[s] = 1;
for(int j = 0; j < n; j++){
if(vis[j]&&j != s){
maxcost[s][j] = maxcost[j][s] = max(maxcost[pa][j],cost[pa][s]);
}
}
used[s][pa] = used[pa][s] = 1;
for(int j = 0; j < n; j++){
if(!vis[j] && lowc[j] > cost[s][j]){
lowc[j] = cost[s][j];
pre[j] = s;
}
}
}
return retsum;
}
int main(){
int T,n;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i = 0; i <=n; i++){
for(int j = 0; j <= n; j++){
cost[i][j] = 1.0*INF;
}
}
for(int i = 0; i < n; i++){
scanf("%lf%lf%d",&cors[i].x,&cors[i].y,&cors[i].peo);
for(int j = 0; j < i; j++){
cost[i][j] = cost[j][i] = distan(cors[i],cors[j]);
}
}
double mst = prim(n);
double maxr = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(i == j) continue;
int tmp = (cors[i].peo + cors[j].peo);
if(!used[i][j]){
maxr = max( maxr, (1.0*tmp)/(mst-maxcost[i][j]));
}else{
maxr = max(maxr,(1.0*tmp)/(mst - cost[i][j]));
}
}
}
printf("%.2lf\n",maxr);
}
return 0;
}

  

HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  2. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  3. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  4. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  5. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形

    题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...

  7. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  8. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  9. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

随机推荐

  1. MongoDB初识篇

    前言 一直听说MongonDB,却没有机会接触它,于是决定先从表面上认识它.MongoDB(分布式文档存储数据库)是一种介于关系型数据库和非关系型数据库之间的数据库,而且它是非关系数据库中最像关系型数 ...

  2. selenium+Node.js在windows下的配置和安装

    转载:http://www.jianshu.com/p/5e64bb70abb8

  3. P2173 [ZJOI2012]网络

    \(\color{#0066ff}{ 题目描述 }\) 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同 ...

  4. Flashcache的 KEEP属性自动失效

    如果希望一个数据对象长期地缓存在flashcache中,则可以手动地将该数据对象的CELL_FLASH_CACHE属性设置为"keep". 其实需要说明的是,但不是数据对象的CEL ...

  5. 07. 如何实现移动端rem适配

    如何实现移动端rem适配 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...

  6. Life is a journey

    Life is a journey. What we should care about is not where it's headed but what we see and how we fee ...

  7. setlocal 本地变量详解

    命令 setlocal (开启本地变量)  endlocal (结束本地变量) 很多新手不理解这句话是什么意思,在批处理中有什么作用. 其实在批处理中 setlocal 作用很大,配合 endloca ...

  8. Go语言基础之14--Waitgroup和原子操作

    一.Waitgroup介绍 1.1 背景 package main import ( "fmt" "time" ) func main() { ch := ma ...

  9. my30_表碎片整理

    确认表的类型与存储引擎,是否全部是innodb select TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE,ENGINE,VERSION,ROW_FORMAT,TABLE_RO ...

  10. Yii2 前台控制器访问权限控制

    class BaseController extends Controller { public function behaviors() { return [ 'access' => [ 'c ...