Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5608    Accepted Submission(s): 1972

Problem Description
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
 
Source
 

题目大意:给你n,表示城市个数,然后给你n个城市的坐标及该城市中的人口数量。让连接这n个城市用n-1条边连接,且距离和最短,距离越长花费越大。数字A表示,用魔法路连接的两个城市的人口的和,B表示除了该魔法路以外的其他路的长度和。求A/B的比率最小值是多少。魔法路没有路长。

解题思路:考虑让除了魔法路以外的路长和最小,那么我们可以从最小生成树中删除一条最长路径。枚举删除任意两点间的最长路,更新出最小比率。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<vector>
#include<math.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1010;
double cost[maxn][maxn];
struct Coor{
double x, y;
int peo;
}cors[maxn];
double distan(Coor a,Coor b){
double dx,dy;
dx = a.x - b.x;
dy = a.y - b.y;
return sqrt( dx*dx + dy*dy );
}
int vis[maxn], pre[maxn] ,used[maxn][maxn];
double maxcost[maxn][maxn], lowc[maxn];
double prim(int n){
memset(vis,0,sizeof(vis));
memset(used,0,sizeof(used));
for(int i = 0; i <= n; i++){
for(int j = 0; j <= n; j++){
maxcost[i][j] = 0;
}
}
// memset(maxcost,0,sizeof(maxcost));
// memset(lowc,0,sizeof(lowc));
double retsum = 0;
vis[0] = 1;
for(int i = 0; i < n; i++){
lowc[i] = cost[0][i];
pre[i] = 0;
}
for(int i = 1; i < n; i++){
int s = -1;
double minc = 1.0*INF;
for(int j = 0; j < n; j++){
if(!vis[j] && lowc[j] < minc){
minc = lowc[j];
s = j;
}
}
if(s == -1){
return -1;
}
retsum += minc;
int pa = pre[s];
vis[s] = 1;
for(int j = 0; j < n; j++){
if(vis[j]&&j != s){
maxcost[s][j] = maxcost[j][s] = max(maxcost[pa][j],cost[pa][s]);
}
}
used[s][pa] = used[pa][s] = 1;
for(int j = 0; j < n; j++){
if(!vis[j] && lowc[j] > cost[s][j]){
lowc[j] = cost[s][j];
pre[j] = s;
}
}
}
return retsum;
}
int main(){
int T,n;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i = 0; i <=n; i++){
for(int j = 0; j <= n; j++){
cost[i][j] = 1.0*INF;
}
}
for(int i = 0; i < n; i++){
scanf("%lf%lf%d",&cors[i].x,&cors[i].y,&cors[i].peo);
for(int j = 0; j < i; j++){
cost[i][j] = cost[j][i] = distan(cors[i],cors[j]);
}
}
double mst = prim(n);
double maxr = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(i == j) continue;
int tmp = (cors[i].peo + cors[j].peo);
if(!used[i][j]){
maxr = max( maxr, (1.0*tmp)/(mst-maxcost[i][j]));
}else{
maxr = max(maxr,(1.0*tmp)/(mst - cost[i][j]));
}
}
}
printf("%.2lf\n",maxr);
}
return 0;
}

  

HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  2. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  3. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  4. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  5. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形

    题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...

  7. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  8. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  9. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

随机推荐

  1. MVC异常的统一处理

    禁用异常跟踪 很多时候异常是不可预料的,在每个Action方法或Controller上应用Exception Filter是不现实的.而且如果异常出现在View中也无法应用Filter.如RangeE ...

  2. SQL Server之XML PATH()

    )='SYS20130228000000012'; SELECT ',' + MedicineTypeID FROM Dic_Res_StoreToType b WHERE b.MedicalInst ...

  3. Python学习第三方库Requests: 让 HTTP 服务人类

    转自官方文档:http://cn.python-requests.org/zh_CN/latest/ 快速上手 http://cn.python-requests.org/zh_CN/latest/u ...

  4. spark(2.1) - spark-shell 下文件系统的数据读写

    spark-shell 本地文件系统数据读写 [ file:// ] 读取 :sc.textFile (" ****") 写入:saveAsTextFile ("**** ...

  5. linux配置环境变量 - 认识

    环境 ubuntu17.04 终端(就是黑框) 认识  环境变量:$PATH 在 ×××/bin 下的命令,可以不用到指定目录下, 比如:安装hbase后,hbase提供一些shell命令在habse ...

  6. js计算每个月的总天数

    js中相关日期的计算 var year = new Date().getFullYear(),//计算当前年份 month = new Date().getMonth()+1,//计算当前月份 dat ...

  7. spring 和 mybatis 整合过程 (包含分页)

    1.spring-mybatis.xml  : 配置 SqlSessionFactory 和  MapperScannerConfigurer  <bean id="sqlSessio ...

  8. Linux中Mysql安装卸载

    参考博客:https://www.cnblogs.com/xrog/p/6862669.html安装步骤:#wget http://dev.mysql.com/get/mysql57-communit ...

  9. [转]SQL truncate 、delete与drop区别

    转自: https://www.cnblogs.com/8765h/archive/2011/11/25/2374167.html 相同点: 1.truncate和不带where子句的delete.以 ...

  10. react 的理念

    命名式的编程方式: 命名式的编程方式,我们会有百分之六七十都在进行dom的操作. 1.声名式的开发: react是面向数据开发的,react是根据这个数据自动构建这个网站,可以把数据理解成图纸,rea ...