机器学习:逻辑回归(OvR 与 OvO)
一、基础理解
- 问题:逻辑回归算法是用回归的方式解决分类的问题,而且只可以解决二分类问题;
- 方案:可以通过改造,使得逻辑回归算法可以解决多分类问题;
- 改造方法:
- OvR(One vs Rest),一对剩余的意思,有时候也称它为 OvA(One vs All);一般使用 OvR,更标准;
- OvO(One vs One),一对一的意思;
- 改造方法不是指针对逻辑回归算法,而是在机器学习领域有通用性,所有二分类的机器学习算法都可使用此方法进行改造,解决多分类问题;
二、原理
1)OvR
- 思想:n 种类型的样本进行分类时,分别取一种样本作为一类,将剩余的所有类型的样本看做另一类,这样就形成了 n 个二分类问题,使用逻辑回归算法对 n 个数据集训练出 n 个模型,将待预测的样本传入这 n 个模型中,所得概率最高的那个模型对应的样本类型即认为是该预测样本的类型;

- 时间复杂度:如果处理一个二分类问题用时 T,此方法需要用时 n.T;
2)OvO
- 思想: n 类样本中,每次挑出 2 种类型,两两结合,一共有 Cn2 种二分类情况,使用 Cn2 种模型预测样本类型,有 Cn2 个预测结果,种类最多的那种样本类型,就认为是该样本最终的预测类型;

- 时间复杂度:如果处理一个二分类问题用时 T,此方法需要用时 Cn2 .T = [n.(n - 1) / 2] . T;
3)区别
- OvO 用时较多,但其分类结果更准确,因为每一次二分类时都用真实的类型进行比较,没有混淆其它的类别;
三、scikit-learn 中的逻辑回归
- scikit-learn的LogisticRegression 算法内包含了:正则化、优化损失函数的方法、多分类方法等;
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False)# LogisticRegression() 实例对象,包含了很多参数;
不懂的要学会 看文档、看文档、看文档:help(算法、实例对象);
C=1.0:正则化的超参数,默认为 1.0;
- multi_class='ovr':scikit-learn中的逻辑回归默认支持多分类问题,分类方式为 'OvR';
- solver='liblinear'、'lbfgs'、'sag'、'newton-cg':scikit-learn中优化损失函数的方法,不是梯度下降法;
- 多分类中使用 multinomial (OvO)时,只能使用 'lbfgs'、'sag'、'newton-cg' 来优化损失函数;
- 当损失函数使用了 L2 正则项时,优化方法只能使用 'lbfgs'、'sag'、'newton-cg';
- 使用 'liblinear' 优化损失函数时,正则项可以为 L1 和 L2 ;
1)例(3 种样本类型):LogisticRegression() 默认使用 OvR
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets iris = datasets.load_iris()
# [:, :2]:所有行,0、1 列,不包含 2 列;
X = iris.data[:,:2]
y = iris.target from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression()
log_reg.fit(X_train, y_train) log_reg.score(X_test, y_test)
# 准确率:0.6578947368421053- 绘制决策边界
def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid(
np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1)
)
X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new)
zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap
custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) plot_decision_boundary(log_reg, axis=[4, 8.5, 1.5, 4.5])
# 可视化时只能在同一个二维平面内体现两种特征;
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.scatter(X[y==2, 0], X[y==2, 1])
plt.show()
2)使用 OvO 分类
log_reg2 = LogisticRegression(multi_class='multinomial', solver='newton-cg')
# 'multinomial':指 OvO 方法; log_reg2.fit(X_train, y_train)
log_reg2.score(X_test, y_test)
# 准确率:0.7894736842105263 plot_decision_boundary(log_reg2, axis=[4, 8.5, 1.5, 4.5])
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.scatter(X[y==2, 0], X[y==2, 1])
plt.show()
3)使用所有分类数据
- OvR
X = iris.data
y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666) log_reg_ovr = LogisticRegression()
log_reg_ovr.fit(X_train, y_train)
log_reg_ovr.score(X_test, y_test)
# 准确率:0.9473684210526315 - OvO
log_reg_ovo = LogisticRegression(multi_class='multinomial', solver='newton-cg')
log_reg_ovo.fit(X_train, y_train)
log_reg_ovo.score(X_test, y_test)
# 准确率:1.0
4)分析
- 通过准确率对比可以看出,使用 OvO 方法改造 LogisticRegression() 算法,得到的模型准确率较高;
四、OvR 和 OvO 的封装
- scikit-learn单独封装了实现 OvO 和 OvR 的类,使得任意二分类算法都可以通过使用这两个类解决多分类问题;
1)OvR 的封装
- 模块
from sklearn.multiclass import OneVsRestClassifier
- 使用方法
- ovr = OneVsRestClassifier(二分类算法的实例对象):得到一个可以解决多分类的实例对象;
- ovr.fit(X_train, y_train):拟合多分类实例对象;
- 例
from sklearn.multiclass import OneVsRestClassifier ovr = OneVsRestClassifier(log_reg)
ovr.fit(X_train, y_train)
ovr.score(X_test, y_test)
# 准确率:0.9473684210526315
2)OvO 的封装
- 模块
from sklearn.multiclass import OneVsOneClassifier
- 使用方法:同理 OvR;
- 例
from sklearn.multiclass import OneVsOneClassifier ovo = OneVsOneClassifier(log_reg)
ovo.fit(X_train, y_train)
ovo.score(X_test, y_test)
# 准确率:1.0
机器学习:逻辑回归(OvR 与 OvO)的更多相关文章
- 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...
- 机器学习/逻辑回归(logistic regression)/--附python代码
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...
- 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)
逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...
- 机器学习——逻辑回归(Logistic Regression)
1 前言 虽然该机器学习算法名字里面有"回归",但是它其实是个分类算法.取名逻辑回归主要是因为是从线性回归转变而来的. logistic回归,又叫对数几率回归. 2 回归模型 2. ...
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- python机器学习-逻辑回归
1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最 ...
- Spark 机器学习------逻辑回归
package Spark_MLlib import javassist.bytecode.SignatureAttribute.ArrayType import org.apache.spark.s ...
- python机器学习——逻辑回归
我们知道感知器算法对于不能完全线性分割的数据是无能为力的,在这一篇将会介绍另一种非常有效的二分类模型--逻辑回归.在分类任务中,它被广泛使用 逻辑回归是一个分类模型,在实现之前我们先介绍几个概念: 几 ...
- 机器学习-逻辑回归与SVM的联系与区别
(搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类 ...
- 逻辑回归模型(Logistic Regression, LR)基础
逻辑回归模型(Logistic Regression, LR)基础 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...
随机推荐
- JAVA基础补漏--基础数据类型与引用数据类型
==在不同数据类型中意义不同. 在基础数据类型中,表示的是数值的比较. 在引用数据类型中,表示的是内存地址值的比较. 一.基本数据类型: byte:Java中最小的数据类型,在内存中占8位(bit), ...
- 有些 where 条件会导致索引无效
在查询中,WHERE 条件也是一个比较重要的因素,尽量少并且是合理的 where条件是徆重要的,尽量在多个条件的时候,把会提取尽量少数据量的条件放在前面,减少后一个 where 条件的查询时间.有些 ...
- 创建SVN仓库的步骤
今天在客户现场联调,两个开发人员之间的代码想用SVN来管理,所以就临时在本地机器上搭建一个SVN仓库.现将操作步骤记录下来,以便后续查阅. 1.安装SVN服务端Setup-Subversion-1.6 ...
- HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)
题意:在区间中找一个数,求出该区间每个数与这个数距离的总和,使其最小 找的数字是中位数(若是偶数个,则中间随便哪个都可)接着找到该区间比此数大的数的总和 区间中位数可以使用划分树,然后在其中记录:每层 ...
- python练习_三级菜单
python练习_三级菜单 需求: 做一个地区查询三级菜单,输入一级能够打印下一级 在第三级个第二级输入e可以返回上一级 在任意一级输入q则退出程序 以下代码实现的功能与思路: 功能: (1)通过In ...
- JavaWeb -- sevlet 监听器
1.三个域对象的监听(创建和销毁) servletContext, session, request 监听器 ServletContext监听器: public class MyServletCon ...
- Python基本语法(一)
注释及注意 #代表注释:冒号:结尾时,接下来的代码会自动缩进,一般为4个空格.Python程序是大小写敏感的. 数据类型和变量 在Python中能够直接处理的数据类型有以下几种: 整数 浮点数 字符串 ...
- ES6-Set和Map数据结构学习笔记
Set和Map数据结构 Set 基本用法 ES6提供了新的数据结构--Set,类似于数组,但是成员的值是唯一的,没有重复的值,Set本身是一种构造函数,用来生成Set数据结构 var s = new ...
- 最实用的 Linux 命令行使用技巧
我们可能每天都会要使用到很多的 Linux 命令行. 我们也会网络上知晓一些使用它们的小技巧,但是如果我们没有时常来进行练习,就有可能会忘掉怎么去使用它们. 所以我就决定把那些你可能会忘记的小提示和小 ...
- MySQL 各种引擎
数据库中的存储引擎其实是对使用了InnoDB.HEAP(也称为MEMORY).CSV.BLACKHOLE(黑洞引擎).ARCHIVE.PERFORMANCE_SCHEMA. Berkeley.Merg ...