[HNOI2008]遥远的行星
题目描述
直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行星都只受到距离遥远的行星的作用。请计算每颗行星的受力,只要结果的相对误差不超过5%即可.
输入输出格式
输入格式:
第一行两个整数N和A. 1<=N<=10^5.0.01< a < =0.35,接下来N行输入N个行星的质量Mi,保证0<=Mi<=10^7
输出格式:
N行,依次输出各行星的受力情况
输入输出样例
说明
精确结果应该为0 0 0 2 3,但样例输出的结果误差不超过5%,也算对
一开始以为要高级数据结构,其实可以不要
问题实际在于要除以(i-j)
重点在于误差不超过5%
所以我们可以估读
当A×i小于100时,可以枚举
A×i大于100,可以把[1,x]分成100份[li,ri]
那么每个区间内的所有力的和就可以估读
ans+=d[i]*(s[ri]-s[li-1])/(i-(ri-li)/2)
也就是把所有的1/(i-j)≈1/(i-(ri-li)/2)
因为0.01<=A<=0.35,所以5%的误差差不多
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
double A,ans[],d[],sum[];
int n;
int main()
{int i,j;
cin>>n>>A;
for (i=;i<=n;i++)
{
scanf("%lf",&d[i]);
sum[i]=sum[i-]+d[i];
}
for (i=;i<=n;i++)
{
int x=i*A;
if (x>)
{
int lim=x/;
for (j=lim;j<=lim*;j+=lim)
{
double mid=(*i-*j+lim-)*0.5;
ans[i]+=d[i]*(sum[j]-sum[j-lim])/mid;
}
for (j=lim*+;j<=x;j++)
ans[i]+=d[i]*d[j]/(i-j);
}
else if (x<=&&x)
{
for (j=;j<=x;j++)
ans[i]+=(d[i]*d[j]/(i-j));
}
}
for (i=;i<=n;i++)
printf("%.6lf\n",ans[i]);
}
[HNOI2008]遥远的行星的更多相关文章
- bzoj1011 [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2480 Solved ...
- 【bzoj1011】[HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 3711 Solved ...
- BZOJ 1011 [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2559 Solved ...
- 1011: [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2241 Solved ...
- BZOJ 1011 [HNOI2008]遥远的行星 (误差分析)
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 4974 Solved ...
- BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special Judge Submit: 5058 Solve ...
- BZOJ1011:[HNOI2008]遥远的行星(乱搞)
Description 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...
- 【BZOJ】1011: [HNOI2008]遥远的行星(近似)
http://www.lydsy.com/JudgeOnline/problem.php?id=1011 题意:$f[i] = \sum_{j=1}^{i-1} \frac{M[i]M[j]}{i-j ...
- [bzoj1011](HNOI2008)遥远的行星(近似运算)
Description 直 线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...
随机推荐
- C语言第五次博客作业
一.PTA实验作业 题目1:6-6 使用函数输出水仙花数 1. 本题PTA提交列表 2. 设计思路 (1) 首先先定义narcissistic函数. (2)定义四个整形变量n,a,d,cnt,sum, ...
- python实现简单tftp(基于udp)
tftp是基于udp的协议 实现简单的tftp,首先要有tftp的协议图. tftp默认接收端口为69,但每次有连接过来后,tftp会随机分配一个端口来专门为这个连接来服务. 操作码:1.上传 2.下 ...
- DML数据操作语言之增加,删除,更新
1.数据的增加 数据的增加要用到insert语句 ,基本格式是: insert into <表名> (列名1,列名2,列名3,......) values (值1,值2,值3,..... ...
- SQL语句取多列的最小值(排除0)
经常遇到获取数据表中多个列的最小值和最大值,例如: 获取这 4个价格的最小值和最大值: SELECT( SELECT min(minPrice) FROM ( VALUES (IIF(MarketSi ...
- js window
window对象: browser object mode :bom对象. bom提供了独立于内容而与浏览器窗口进行交互的对象. bom主要用于管理窗口与窗口之间的通讯,因此其核心对象是window ...
- CSS基础:块级元素与盒模型
简介 在 HTML4.01 中,元素通常可以分为块级元素( “Block-level element” ) 和内联元素 ( "Inline-level element" ) 两大类 ...
- Java Jar包压缩、解压使用指南
什么是jar包 JAR(Java Archive)是Java的归档文件,它是一种与平台无关的文件格式,它允许将许多文件组合成一个压缩文件. 如何打/解包 使用jdk/bin/jar.exe工具,配置完 ...
- iot前台开发环境:请求示例
参考链接:http://www.cnblogs.com/keatkeat/category/872790.html 编辑->update保存 一.typescipt import { Injec ...
- spring-oauth-server实践:授权方式四:client_credentials 模式下有效期内重复申请 access_token ?
spring-oauth-server入门(1-12)授权方式四:client_credentials 模式下有效期内重复申请 access_token ? 一.失效重建邏輯 二.如果沒有失效,不会重 ...
- 从感知机到 SVM,再到深度学习(一)
在上篇博客中提到,如果想要拟合一些空间中的点,可以用最小二乘法,最小二乘法其实是以样例点和理论值之间的误差最小作为目标.那么换个场景,如果有两类不同的点,而我们不想要拟合这些点,而是想找到一条 ...