●洛谷P3687 [ZJOI2017]仙人掌
题链:
https://www.luogu.org/problemnew/show/P3687
题解:
计数DP,树形DP。
(首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0)
然后由于本来图中就存在于环中的边,不可能再次被包含,
所以图中的环就把这个图分为的若干颗树。
那么答案就是分别求出每颗树的方案数并相乘。
现在问题变为了求:把一颗树通过连边使得仍然是仙人掌的方案数。
定义如下3个数组:
f[u]:表示u这颗子树中没有一条从u到子树内某个的节点的路径可以向其它子树连边的方案数。
g[u]:表示u这颗子树中有一条从u到子树内某个节点的路径可以其它子树连边的方案数。
以及一个预处理的h[n]:
表示有n个元素,每个元素可以选择另一个元素与其两两匹配或者该元素不与任何元素匹配的方案数。
先看看h[n]的求法:
h[n]=h[n-1]+h[n-2]*(n-1)
即表明第n个元素要么独立,要么与另外(n-1)个元素中的某一个匹配。
然后看看怎样DP:
对于当前的子树的根u,v是其儿子节点,num是其儿子节点个数
$$f[u]=\sum g[v] \times h[num] $$
因为num个儿子有h[num]种匹配方案数,所以乘上h[num]
(所谓的匹配就是把g[v]中的那条路径的末端和与它匹配的那个v'的g[v']中的那条路径的末端连边)
然后还要求出当前的g[u]:
$$g[u]=f[u]+\sum g[v] \times h[num-1] \times num$$
含义如下:
由于u点自己可以成为g[u]中的那条路径的末端,所以$$+f[u]$$
然后u还可以选择一个儿子g[son]中的路径来连上自己形成新的g[u]中的路径。
这样的话,方案数是 $g[son]* \sum_{v!=son} g[v] \times h[num-1] = \sum g[v] \times h[num-1]$
又因为u有num个儿子,即有num中选法,所以:
$$+\sum g[v] \times h[num-1] \times num $$
代码:
#include<bits/stdc++.h>
#define MAXN 500005
#define MOD 998244353
#define rint register int
using namespace std;
int Case,N,M,dnt,cactus,ANS;
int dfn[MAXN],lu[MAXN],fa[MAXN],f[MAXN],g[MAXN],h[MAXN];
struct node{
int id,odr;
bool operator < (const node &rtm) const{
return odr<rtm.odr;
}
}A[MAXN];
struct Edge{
int ent;
int to[MAXN*4],nxt[MAXN*4],head[MAXN];
void Reset(int n){
for(rint i=1;i<=n;i++) head[i]=0; ent=2;
}
void Adde(int u,int v){
to[ent]=v; nxt[ent]=head[u]; head[u]=ent++;
}
}E;
void dfs(int u,int dad){
dfn[u]=++dnt; fa[u]=dad;
for(int e=E.head[u];e;e=E.nxt[e]){
int v=E.to[e];
if(dfn[v]) continue;
dfs(v,u);
}
}
void DP(int u,int rt){
lu[u]=-1; f[u]=1; int num=0,gson=1;
for(int e=E.head[u];e;e=E.nxt[e]){
int v=E.to[e];
if(lu[v]!=1||v==fa[u]) continue;
DP(v,0); num++;
gson=1ll*gson*g[v]%MOD;
}
f[u]=1ll*gson*h[num]%MOD;
g[u]=(1ll*f[u]+1ll*gson*h[num-1]%MOD*num)%MOD;
}
int main(){
h[0]=h[1]=1;
for(int i=1;i<=500000;i++) h[i]=(1ll*h[i-1]+1ll*h[i-2]*(i-1))%MOD;
for(scanf("%d",&Case);Case;Case--){
scanf("%d%d",&N,&M);
E.Reset(N); dnt=0; cactus=1; ANS=1;
for(rint i=1;i<=N;i++) lu[i]=dfn[i]=fa[i]=0;
for(int i=1,a,b;i<=M;i++)
scanf("%d%d",&a,&b),E.Adde(a,b),E.Adde(b,a);
dfs(1,0);
for(int e=1,u,v;e<=M;e++){
u=E.to[e*2]; v=E.to[e*2+1];
if(dfn[u]>dfn[v]) swap(u,v);
while(v!=u){
lu[v]++;
if(lu[v]>2){cactus=0;break;}
v=fa[v];
}
}
if(!cactus){printf("%d\n",0); continue;}
for(int i=1;i<=N;i++) A[i]=(node){i,dfn[i]};
sort(A+1,A+N+1);
for(int i=1,u;i<=N;i++){
u=A[i].id;
if(lu[u]==-1) continue;
DP(u,1); ANS=1ll*ANS*f[u]%MOD;
}
printf("%d\n",ANS);
}
return 0;
}
●洛谷P3687 [ZJOI2017]仙人掌的更多相关文章
- 洛谷 P4244 [SHOI2008]仙人掌图 II 解题报告
P4244 [SHOI2008]仙人掌图 II 题目背景 题目这个II是和SHOI2006的仙人掌图区分的,bzoj没有. 但是实际上还是和bzoj1023是一个题目的. 题目描述 如果某个无向连通图 ...
- 洛谷P4244 [SHOI2008]仙人掌图 II
传送门 首先不考虑带环的仙人掌,如果只是一棵普通的树,可以通过dp求每棵子树中的最长链和次长链求树的直径. 那么如果dfs的时候遇到了环,应该用环上的两点挂着的最长链加上两点间的距离来更新树的直径,并 ...
- ●洛谷P3688 [ZJOI2017]树状数组
题链: https://www.luogu.org/problemnew/show/P3688题解: 二维线段树. 先不看询问时l=1的特殊情况. 对于一个询问(l,r),如果要让错误的程序得到正确答 ...
- 2018.10.29 洛谷P4129 [SHOI2006]仙人掌(仙人掌+高精度)
传送门 显然求出每一个环的大小. Ans=∏i(siz[i]+1)Ans=\prod_i(siz[i]+1)Ans=∏i(siz[i]+1) 注意用高精度存答案. 代码: #include<b ...
- 洛谷P5211 [ZJOI2017]字符串(线段树+乱搞)
题面 传送门 题解 为什么大佬们全都是乱搞的--莫非这就是传说中的暴力能进队,乱搞能AC-- 似乎有位大佬能有纯暴力+玄学优化\(AC\)(不算上\(uoj\)的\(Hack\)数据的话--这要是放到 ...
- 洛谷 P3688 - [ZJOI2017]树状数组(二维线段树+标记永久化)
题面传送门 首先学过树状数组的应该都知道,将树状数组方向写反等价于前缀和 \(\to\) 后缀和,因此题目中伪代码的区间求和实质上是 \(sum[l-1...n]-sum[r...n]=sum[l-1 ...
- 洛谷P3688/uoj#291. [ZJOI2017]树状数组
传送门(uoj) 传送门(洛谷) 这里是题解以及我的卡常数历程 话说后面那几组数据莫不是lxl出的这么毒 首先不难发现这个东西把查询前缀和变成了查询后缀和,结果就是查了\([l-1,r-1]\)的区间 ...
- 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...
- [洛谷日报第62期]Splay简易教程 (转载)
本文发布于洛谷日报,特约作者:tiger0132 原地址 分割线下为copy的内容 [洛谷日报第62期]Splay简易教程 洛谷科技 18-10-0223:31 简介 二叉排序树(Binary Sor ...
随机推荐
- Django 个性化管理员站点
from django.contrib import admin # Register your models here. from .models import Moment class Momen ...
- 大数据学习总结(4)参考splunk架构
- python网络爬虫与信息提取 学习笔记day3
Day3: 只需两行代码解析html或xml信息 具体代码实现:day3_1 注意BeautifulSoup的B和S需要大写,因为python大小写敏感 import requests r ...
- 整理一下 System.Linq.Enumerable 类中的那些比较少用的方法
Linq 虽然用得多,但是里面有一些方法比较少用,因此整理一下.Enumerable 类的所有方法可以在 MSDN 上查阅到:https://msdn.microsoft.com/zh-cn/libr ...
- python爬虫动态html selenium.webdriver
python爬虫:利用selenium.webdriver获取渲染之后的页面代码! 1 首先要下载浏览器驱动: 常用的是chromedriver 和phantomjs chromedirver下载地址 ...
- django的models模型类的常用数据类型和选项
django框架的models模块ORM框架,能够让我们通过编写类的方式,帮助我们自动生成数据库表. 生成的数据库表名为 应用模块名称_类名 数据库表中字段名 如果我们没有在参数中指定,就是我们写的类 ...
- 使用 C#/.NET Core 实现单体设计模式
本文的概念内容来自深入浅出设计模式一书 由于我在给公司做内培, 所以最近天天写设计模式的文章.... 单体模式 Singleton 单体模式的目标就是只创建一个实例. 实际中有很多种对象我们可能只需要 ...
- Eclipse中JavaSwing图形插件安装
1.在百度中搜索WindowBuilder,找到http://www.eclipse.org/windowbuilder/ 2.点击Download调转到页面: 因为我的eclipse版本是 3.点击 ...
- mysql安装及常见问题
下载了MySQL的压缩包,开始配置的时候遇到一大堆问题,下面记录下,也希望对遇到同样问题的你有帮助 开始将压缩包解压到指定文件夹,然后建立一个txt文件命名为my.ini,写入下面的内容 [mysql ...
- cookie的实现原理
cookie技术通过在请求和响应报文中写入cookie信息来控制客户点的状态 cookie会根据从服务器端发送的响应报文内的一个叫做set-cookie的首部字段信息,通知客户端保存cookie 当下 ...