[NOIP2013/Codevs3287]货车运输-最小[大]生成树-树上倍增
Problem 树上倍增
题目大意
给出一个图,给出若干个点对u,v,求u,v的一条路径,该路径上最小的边权值最大。
Solution
看到这个题第一反应是图论。。
然而,任意路径最小的边权值最大,如果仔细思考的话就会知道,如果两个点相互连通,那么一定走的是最大生成树上的路径,而不会选择其他任何一条路径去走。
这个是可以非常简单证明的,就不再详述。
那么既然知道了这个,当然是先建一颗最大生成树啦!
现在问题来了,Prim&Kruskal,选哪个?
分析一下,prim复杂度$O(n^2)$,n为总点数。
Kruskal复杂度$O(m\log_2n)$,m为总边数。
显而易见,在这一道题目中kruskal更优。
于是写一个kruskal最大生成树。
接下来要在这颗树上跑。
我们设立一个fa数组,其fa[i][j]表示对于i节点,向上的2^j个节点编号是什么。显而易见,fa[i][0]就是i的父亲。
$$fa[i][j]=fa[fa[i][j-1][j-1]$$
然后我们还需要一个储存最小值的数组,设立minn数组,其中minn[i][j]表示对于i节点,向上2^j个节点的边最小值
显而易见,minn[i][0]就表示i节点本身链接父亲边的权值.
$$minn[i][j]=\min(minn[fa[i][j-1]][j-1],minn[i][j-1])$$
可以看出,这两个数组在O(n)的时间就可以求出来了。
接下来,对于每一个询问点对,我们只需要倍增求lca,再求两个点到lca路径上最小值,就可以求出答案。
判断uv谁深度更深,更深深度先跳到同一深度。
接下来两个一起向上跳,能够跳就跳。
具体方法可以看代码。
AC Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct kruskal{
int u,v,w;
}ekr[];
struct node{
int to,next,w;
}e[];
int f[],h[],dep[],n,m,u,v,w,q,ktot=,tot=,ans;
int fa[][],minn[][];
void add_kruskal(int u,int v,int w){
ekr[++ktot].u=u;ekr[ktot].v=v;ekr[ktot].w=w;
}
bool cmp(kruskal a,kruskal b){
return a.w>b.w;
}
void add(int u,int v,int w){
e[++tot].to=v;e[tot].next=h[u];h[u]=tot;e[tot].w=w;
e[++tot].to=u;e[tot].next=h[v];h[v]=tot;e[tot].w=w;
}
void initdfs(int x,int last,int we,int depth){
dep[x]=depth;
fa[x][]=last;
minn[x][]=we;
for(int i=;i<=;i++){
fa[x][i]=fa[fa[x][i-]][i-];
minn[x][i]=min(minn[x][i-],minn[fa[x][i-]][i-]);
}
for(int i=h[x];~i;i=e[i].next)
if(e[i].to!=last)initdfs(e[i].to,x,e[i].w,depth+);
}
void queue(int u,int v){
if(dep[u]<dep[v])swap(u,v);
int dist=dep[u]-dep[v],tmp=;
while(dist){
if(dist%==)ans=min(ans,minn[u][tmp]),u=fa[u][tmp];
tmp++;
dist>>=;
}
for(int i=;i>=;i--){
if(fa[u][i]!=fa[v][i]){
ans=min(min(ans,minn[u][i]),minn[v][i]);
u=fa[u][i];
v=fa[v][i];
}
}
ans=(u==v)?ans:min(min(ans,minn[u][]),minn[v][]);
}
int find(int x){
if(f[x]!=x)f[x]=find(f[x]);
return f[x];
}
int main(){
// freopen("xsy2018.in","r",stdin);
memset(h,-,sizeof(h));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
add_kruskal(u,v,w);
}
sort(ekr+,ekr+ktot+,cmp);
for(int i=;i<=n;i++)f[i]=i;
for(int i=,sum=;i<=ktot;i++){
int fu=find(ekr[i].u),fv=find(ekr[i].v);
if(fu!=fv){
add(ekr[i].u,ekr[i].v,ekr[i].w);
f[fu]=fv;f[ekr[i].u]=fv;f[ekr[i].v]=fv;
sum++;
}
if(tot==((n-)<<))break;
}
initdfs(,,,);
scanf("%d",&q);
for(int i=;i<=q;i++){
scanf("%d%d",&u,&v);
ans=;
queue(u,v);
printf("%d\n",(ans==)?-:ans);
}
}
[NOIP2013/Codevs3287]货车运输-最小[大]生成树-树上倍增的更多相关文章
- NOIP2013 货车运输 (最大生成树+树上倍增LCA)
死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...
- NOIP2013 货车运输(最大生成树,倍增)
NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...
- xsy 2018 【NOIP2013】货车运输
[NOIP2013]货车运输 Description A 国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有q辆货车在运输货物,司机们想知道每辆车在不超 ...
- 【NOIP2013/Codevs3287】货车运输-最小生成树(大)-树上倍增
https://www.luogu.org/problemnew/show/P1967 由题可知,我们走的路的边应尽可能大,所以通过kruscal建最大生成树的图,再树上倍增,注意可能有多棵树; #i ...
- 「NOIP2013」「LuoguP1967」货车运输(最大生成树 倍增 LCA
题目描述 AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最 ...
- NOIP2013 D1T3 货车运输 zz耻辱记
目录 先来证明下lemma: 图上2点间最小边权最大的路径一定在MST上 感性理解下: 每次kruskal algo都连接最大的不成环边 此时有2个未联通的联通块被连起来. 那么考虑u, v两点的联通 ...
- codevs3287货车运输(最小生成树+LCA)
3287 货车运输 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description A 国有 ...
- C++之路进阶——codevs3287(货车运输)
3287 货车运输 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description A 国有 n ...
- luogu1967 货车运输 最大瓶颈生成树
题目大意 给出一张图,给出q对点,求这两个点间权值最小边最大的路径,输出这个最小边权. 题解 我们先一条一条边建图.当建立的边使得图中形成环时,因为环中的每个节点只考虑是否连通和瓶颈大小,要想互相连通 ...
随机推荐
- JavaScript Style Guide中文总结
github原址:https://github.com/airbnb/javascript 类型*基本类型:包括string.number.boolean.null.undefined,存储的是值本身 ...
- 【2017-06-01】Linq基础+Lambda表达式实现对数据库的增删改查
一.Linq to sql 类 高集成化的数据库访问技术 使用Linq可以代替之前的Ado.Net.省去了自己敲代码的实体类和数据访问类的大量工作. 实体类: 添加一个Linq to sql 类 -- ...
- 一天搞定HTML----标签语义化04
根据页面里不同的内容,选择最适合它的标签,而不通篇只用一种标签 标签语义化作用: 代码演示 通过比较- - -H5布局和DIV+CSS 布局- - -体现标签语义化 注意: 标签语义化,不仅仅只是指使 ...
- 基于谱聚类的三维网格分割算法(Spectral Clustering)
谱聚类(Spectral Clustering)是一种广泛使用的数据聚类算法,[Liu et al. 2004]基于谱聚类算法首次提出了一种三维网格分割方法.该方法首先构建一个相似矩阵用于记录网格上相 ...
- Redis 学习之简介及安装
一.redis简介 Redis是一个开源的,先进的key-value存储.它通常被称为数据结构服务器,因为键可以包含字符串.哈希.链表.集合和有序集合. 支持的数据类型:string(字符串).lis ...
- 关于combotree的用法总结
后台: 实体树 public class TreeNode{ private String id; private String text; private String level; private ...
- weather API 天气api接口 收集整理
腾讯 http://sou.qq.com/online/get_weather.php?callback=Weather&city=南京 中国天气-weather.com.cn http:// ...
- 提高java编程质量 - (二)取余用偶判断,不要用奇判断
取余判断原则:取余用偶判断,不要用奇判断 先看一个 程序: package com.test; import java.util.Scanner; public class t1 { public s ...
- 编码的秘密(python版)
编码(python版) 最近在学习python的过程中,被不同的编码搞得有点晕,于是看了前人的留下的文档,加上自己的理解,准备写下来,分享给正在为编码苦苦了挣扎的你. 编码的概念 编码就是将信息从一种 ...
- Java——面向对象基础
Java继承 继承的概念 继承是java面向对象编程技术的一块基石,因为它允许创建分等级层次的类. 继承就是子类继承父类的特征和行为,使得子类具有父类的各种属性和方法,或子类从父类继承方法,使得子类具 ...