Problem 树上倍增

题目大意

给出一个图,给出若干个点对u,v,求u,v的一条路径,该路径上最小的边权值最大。

Solution

看到这个题第一反应是图论。。

然而,任意路径最小的边权值最大,如果仔细思考的话就会知道,如果两个点相互连通,那么一定走的是最大生成树上的路径,而不会选择其他任何一条路径去走。

这个是可以非常简单证明的,就不再详述。

那么既然知道了这个,当然是先建一颗最大生成树啦!

现在问题来了,Prim&Kruskal,选哪个?

分析一下,prim复杂度$O(n^2)$,n为总点数。

Kruskal复杂度$O(m\log_2n)$,m为总边数。

显而易见,在这一道题目中kruskal更优。

于是写一个kruskal最大生成树。

接下来要在这颗树上跑。

我们设立一个fa数组,其fa[i][j]表示对于i节点,向上的2^j个节点编号是什么。显而易见,fa[i][0]就是i的父亲。

$$fa[i][j]=fa[fa[i][j-1][j-1]$$

然后我们还需要一个储存最小值的数组,设立minn数组,其中minn[i][j]表示对于i节点,向上2^j个节点的边最小值

显而易见,minn[i][0]就表示i节点本身链接父亲边的权值.

$$minn[i][j]=\min(minn[fa[i][j-1]][j-1],minn[i][j-1])$$

可以看出,这两个数组在O(n)的时间就可以求出来了。

接下来,对于每一个询问点对,我们只需要倍增求lca,再求两个点到lca路径上最小值,就可以求出答案。

判断uv谁深度更深,更深深度先跳到同一深度。

接下来两个一起向上跳,能够跳就跳。

具体方法可以看代码。

AC Code

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct kruskal{
int u,v,w;
}ekr[];
struct node{
int to,next,w;
}e[];
int f[],h[],dep[],n,m,u,v,w,q,ktot=,tot=,ans;
int fa[][],minn[][];
void add_kruskal(int u,int v,int w){
ekr[++ktot].u=u;ekr[ktot].v=v;ekr[ktot].w=w;
}
bool cmp(kruskal a,kruskal b){
return a.w>b.w;
}
void add(int u,int v,int w){
e[++tot].to=v;e[tot].next=h[u];h[u]=tot;e[tot].w=w;
e[++tot].to=u;e[tot].next=h[v];h[v]=tot;e[tot].w=w;
}
void initdfs(int x,int last,int we,int depth){
dep[x]=depth;
fa[x][]=last;
minn[x][]=we;
for(int i=;i<=;i++){
fa[x][i]=fa[fa[x][i-]][i-];
minn[x][i]=min(minn[x][i-],minn[fa[x][i-]][i-]);
}
for(int i=h[x];~i;i=e[i].next)
if(e[i].to!=last)initdfs(e[i].to,x,e[i].w,depth+);
}
void queue(int u,int v){
if(dep[u]<dep[v])swap(u,v);
int dist=dep[u]-dep[v],tmp=;
while(dist){
if(dist%==)ans=min(ans,minn[u][tmp]),u=fa[u][tmp];
tmp++;
dist>>=;
}
for(int i=;i>=;i--){
if(fa[u][i]!=fa[v][i]){
ans=min(min(ans,minn[u][i]),minn[v][i]);
u=fa[u][i];
v=fa[v][i];
}
}
ans=(u==v)?ans:min(min(ans,minn[u][]),minn[v][]);
}
int find(int x){
if(f[x]!=x)f[x]=find(f[x]);
return f[x];
}
int main(){
// freopen("xsy2018.in","r",stdin);
memset(h,-,sizeof(h));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
add_kruskal(u,v,w);
}
sort(ekr+,ekr+ktot+,cmp);
for(int i=;i<=n;i++)f[i]=i;
for(int i=,sum=;i<=ktot;i++){
int fu=find(ekr[i].u),fv=find(ekr[i].v);
if(fu!=fv){
add(ekr[i].u,ekr[i].v,ekr[i].w);
f[fu]=fv;f[ekr[i].u]=fv;f[ekr[i].v]=fv;
sum++;
}
if(tot==((n-)<<))break;
}
initdfs(,,,);
scanf("%d",&q);
for(int i=;i<=q;i++){
scanf("%d%d",&u,&v);
ans=;
queue(u,v);
printf("%d\n",(ans==)?-:ans);
}
}

[NOIP2013/Codevs3287]货车运输-最小[大]生成树-树上倍增的更多相关文章

  1. NOIP2013 货车运输 (最大生成树+树上倍增LCA)

    死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...

  2. NOIP2013 货车运输(最大生成树,倍增)

    NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...

  3. xsy 2018 【NOIP2013】货车运输

    [NOIP2013]货车运输 Description A 国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有q辆货车在运输货物,司机们想知道每辆车在不超 ...

  4. 【NOIP2013/Codevs3287】货车运输-最小生成树(大)-树上倍增

    https://www.luogu.org/problemnew/show/P1967 由题可知,我们走的路的边应尽可能大,所以通过kruscal建最大生成树的图,再树上倍增,注意可能有多棵树; #i ...

  5. 「NOIP2013」「LuoguP1967」货车运输(最大生成树 倍增 LCA

    题目描述 AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最 ...

  6. NOIP2013 D1T3 货车运输 zz耻辱记

    目录 先来证明下lemma: 图上2点间最小边权最大的路径一定在MST上 感性理解下: 每次kruskal algo都连接最大的不成环边 此时有2个未联通的联通块被连起来. 那么考虑u, v两点的联通 ...

  7. codevs3287货车运输(最小生成树+LCA)

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description A 国有 ...

  8. C++之路进阶——codevs3287(货车运输)

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description A 国有 n ...

  9. luogu1967 货车运输 最大瓶颈生成树

    题目大意 给出一张图,给出q对点,求这两个点间权值最小边最大的路径,输出这个最小边权. 题解 我们先一条一条边建图.当建立的边使得图中形成环时,因为环中的每个节点只考虑是否连通和瓶颈大小,要想互相连通 ...

随机推荐

  1. R语言-混合型数据聚类

    利用聚类分析,我们可以很容易地看清数据集中样本的分布情况.以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时包含连续型变量.名义型变量和顺序型变量 ...

  2. html或者php中 input框限制只能输入正整数,逻辑与和或运算

    有时需要限制文本框输入内容的类型,本节分享下正则表达式限制文本框只能输入数字.小数点.英文字母.汉字等代码. 例如,输入大于0的正整数 代码如下: <input onkeyup="if ...

  3. jq、js中判断checkbox是否选中

    最近在开发项目时用到checkbox复选框,其中遇到一个问题:在JQ中如何判断checkbox是否被选中呢?之前用JQ获取元素的属性用的都是attr(),但用在checkbox上却没有用,原因何在?? ...

  4. [翻译] 编写高性能 .NET 代码--第五章 通用编码与对象设计 -- 类 vs 结构体

    本章介绍了本书其它部分未涉及到的一些编码和设计原则.包含了一些.NET的应用场景,有些不会造成太大危害,有些则会造成明显的问题.剩下的则根据你的使用方法会产生不同的效果.如果要对本章节出现的原则做一个 ...

  5. PHP 获取系统信息,PHP 获取服务器详细信息

    获取系统类型及版本号:    php_uname()                                   (例:Windows NT COMPUTER 5.1 build 2600)只 ...

  6. Codility---MaxProfit

    Task description A zero-indexed array A consisting of N integers is given. It contains daily prices ...

  7. Linux根目录各个文件夹介绍及说明

    /bin 二进制可执行命令 /dev 设备特殊文件 /etc 系统管理和配置文件 /etc/rc.d 启动的配置文件和脚本 /home 用户主目录的基点,比如用户user的主目录就是/home/use ...

  8. angularjs下拉框实现渲染html

    angualrjs处于安全的考虑,插值 指令会对相应字符串进行过滤,避免出现html攻击.但是在一些时候,我们需要渲染html,比如实现一个分级的下拉框,代码如下: <body ng-app=& ...

  9. 浅尝JavaScript document对象

    document对象 每个载入浏览器的 HTML 文档都会成为 Document 对象.document 对象是HTML文档的根节点与所有其他节点(元素节点,文本节点,属性节点, 注释节点).Docu ...

  10. csvn install guide

    一. make sure java install $ java -version $ echo $JAVA_HOME 二. untar tgz file $ tar xf CollabNetSubv ...