分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
typedef long long LL;
const int N = 1e6+;
const int INF=0x3f3f3f3f;
int phi[N],c[N<<];
void pushup(int rt){
c[rt]=min(c[rt<<],c[rt<<|]);
}
void add(int rt,int l,int r,int pos,int t){
if(l==r){
c[rt]=min(c[rt],t);
return;
}
int m=(l+r)>>;
if(pos<=m)add(rt<<,l,m,pos,t);
else add(rt<<|,m+,r,pos,t);
pushup(rt);
}
int get(int rt,int l,int r,int x,int y){
if(x<=l&&r<=y)return c[rt];
int m=(l+r)>>;
int ans=INF;
if(x<=m)ans=min(ans,get(rt<<,l,m,x,y));
if(y>m)ans=min(ans,get(rt<<|,m+,r,x,y));
return ans;
}
int main(){
phi[]=;
for(int i=;i<=N-;++i){
if(!phi[i]){
for(int j=i;j<=N-;j+=i){
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
memset(c,INF,sizeof(c));
for(int i=;i<=N-;++i)
add(,,N-,phi[i],i);
int T,cas=;
scanf("%d",&T);
while(T--){
int n;
scanf("%d",&n);
LL ans=;
for(int i=;i<=n;++i){
int x;
scanf("%d",&x);
ans+=get(,,N-,x,N-);
}
printf("Case %d: %lld Xukha\n",++cas,ans);
}
return ;
}

LightOJ 1370 Bi-shoe and Phi-shoe 欧拉函数+线段树的更多相关文章

  1. loj1370(欧拉函数+线段树)

    传送门:Bi-shoe and Phi-shoe 题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和. 分析:先预处理出1~1e6的欧拉函数,然后建立一颗 ...

  2. [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树

    链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...

  3. LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)

    题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...

  4. bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)

    这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...

  5. [LNOI] 相逢是问候 || 扩展欧拉函数+线段树

    原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...

  6. BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]

    题意: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 显然树链剖分可做 ...

  7. BZOJ 4034 树上操作(树的欧拉序列+线段树)

    刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...

  8. BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)

    题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...

  9. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

随机推荐

  1. web api写api接口时返回

    web api写api接口时默认返回的是把你的对象序列化后以XML形式返回,那么怎样才能让其返回为json呢,下面就介绍两种方法: 方法一:(改配置法) 找到Global.asax文件,在Applic ...

  2. 一些浏览器HACKS

    1.选择器HACKS /*IE6及以下*/            *html #uno{...} /*IE7*/                    *:first-child+html #dos{ ...

  3. Yii通过控制台命令创建定时任务

    假设Yii项目路径为 /home/apps/ 1. 创建文件 /home/apps/protected/commands/crons.php <?php $yii = '/home/apps/f ...

  4. 【BZOJ】1070: [SCOI2007]修车

    1070: [SCOI2007]修车 Description 同 一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需 ...

  5. 使用WampServer 3.0

    在server上安装了WampServer 发现本地使用良好,但是无法从别的PC访问. 原因有二: 1.现象:输入连接无反应 原因:server本身用了80端口,所有WampServer我就设置了80 ...

  6. C#读取Excel五种方式的体会

    原地址: http://blog.csdn.net/dapengbusi/article/details/38117817 http://blog.csdn.net/dapengbusi/articl ...

  7. FZU 2150 Fire Game(BFS)

    点我看题目 题意 :就是有两个熊孩子要把一个正方形上的草都给烧掉,他俩同时放火烧,烧第一块的时候是不花时间的,每一块着火的都可以在下一秒烧向上下左右四块#代表草地,.代表着不能烧的.问你最少花多少时间 ...

  8. FZU 2140 Forever 0.5

     Problem 2140 Forever 0.5 Accept: 36    Submit: 113    Special JudgeTime Limit: 1000 mSec    Memory ...

  9. android 开发adb server is out of date 解决方案

    查看到底是哪个端口给占用了 输入红色部分命令 C:\Users\xxxxxx>netstat -ano | findstr "5037" TCP    127.0.0.1:5 ...

  10. PHP reset() 函数

    定义和用法 reset()函数把数组的内部指针指向第一个元素,并返回这个元素的值.若失败,则返回 FALSE. reset()函数用来将数组指针设置回数组的开始位置.如果需要在一个脚本中多次查看或处理 ...