题目地址:http://ac.jobdu.com/problem.php?pid=1042

题目描述:

Find a longest common subsequence of two strings.

输入:

First and second line of each input case contain two strings of lowercase character a…z. There are no spaces before, inside or after the strings. Lengths of strings do not exceed 100.

输出:

For each case, output k – the length of a longest common subsequence in one line.

样例输入:
abcd
cxbydz
样例输出:
2
#include <stdio.h>
#include <string.h> #define MAX 101 int main(void){
char first[MAX], second[MAX];
int len1, len2;
int i, j;
int subseq[2][MAX]; while (scanf ("%s%s", first, second) != EOF){
len1 = strlen (first);
len2 = strlen (second);
for (i=0; i<=len2; ++i)
subseq[0][i] = 0;
subseq[1][0] = 0;
for (i=1; i<=len1; ++i){
for (j=1; j<=len2; ++j){
if (first[i-1] == second[j-1])
subseq[i%2][j] = subseq[(i-1)%2][j-1] + 1;
else{
subseq[i%2][j] = (subseq[(i-1)%2][j] > subseq[i%2][j-1]) ? subseq[(i-1)%2][j] : subseq[i%2][j-1];
}
}
}
printf ("%d\n", subseq[len1%2][len2]);
} return 0;
}

HDOJ上相似的题目:http://acm.hdu.edu.cn/showproblem.php?pid=1243

参考资料:http://www.cnblogs.com/liyukuneed/archive/2013/05/22/3090597.html

九度OJ 1042 Coincidence -- 动态规划(最长公共子序列)的更多相关文章

  1. 九度oj 题目1533:最长上升子序列

    题目描述: 给定一个整型数组, 求这个数组的最长严格递增子序列的长度. 譬如序列1 2 2 4 3 的最长严格递增子序列为1,2,4或1,2,3.他们的长度为3. 输入: 输入可能包含多个测试案例. ...

  2. 题目1042:Coincidence(最长公共子序列)

    问题来源 http://ac.jobdu.com/problem.php?pid=1042 问题描述 给定两个字符串,求其最长公共子序列(LCS). 问题分析 网上是在是太多这类问题的文章了,随便贴一 ...

  3. 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串

    LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...

  4. 动态规划———最长公共子序列(LCS)

    最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/ ...

  5. 动态规划 - 最长公共子序列(LCS)

    最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...

  6. 算法导论-动态规划(最长公共子序列问题LCS)-C++实现

    首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2  ...

  7. 动态规划---最长公共子序列 hdu1159

    hdu1159 题目要求两个字符串最长公共子序列, 状态转换方程   f[i][j]=f[i-1][j-1]+1; a[i]=b[j]时 f[i][j]=MAX{f[i-1][j],f[i][j-1] ...

  8. 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)

    From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...

  9. 动态规划----最长公共子序列(LCS)问题

    题目: 求解两个字符串的最长公共子序列.如 AB34C 和 A1BC2   则最长公共子序列为 ABC. 思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归.也可以使用动态规划,在建 ...

随机推荐

  1. Select the best path in a matrix

    Amazon interview question: Given a 2-dimensional array with arbitrary sizes and contains random posi ...

  2. [C#]生成预定义全颜色表

    生成Color类所有static预定义成员的颜色表 const long CELLS_PER_LINE = 10; const float MARGIN = 12; const float CELL_ ...

  3. firefox和chrome对于favicon.ico关于content-security-policy的不同处理

    1.favicon.ico是网站的title图标 2.在设置CSP时,举例如下,表示只允许来源为https://my.alipay.com的图片,如果不是,则向指定的url(report.php)发出 ...

  4. LINQ to JavaScript

    JSLINQ 是一个将LINQ对象转化为JavaScript对象的工具 .它是构建在JavaScript的数组对象的基础上进行转换的,如果您使用的是一个数组,你可以使用LINQ到javascript ...

  5. 数字信号处理与音频处理(使用Audition)

    前一阵子由于考博学习须要,看了<数字信号处理>,之前一直不清除这门课的理论在哪里应用比較广泛. 这次正巧用Audition处理了一段音频,猛然发现<数字信号处理>这门课还是很实 ...

  6. 在Linux下查看系统版本信息命令总结

    每次在想查看系统是多少位的时候.总是记不清究竟用哪个命令.所以做个总结. vonzhou@de16-C6100:~$ lsb_release -a No LSB modules are availab ...

  7. 使用ThinkPHP框架高速开发站点(多图)

    使用ThinkPHP框架高速搭建站点 这一周一直忙于做实验室的站点,基本功能算是完毕了.比較有收获的是大概了解了ThinkPHP框架.写一些东西留作纪念吧.假设对于相同是Web方面新手的你有一丝丝帮助 ...

  8. PHP获取客户端和服务器IP地址

    /** * 获取客户端IP地址 * @return string */ function get_client_ip() { if(getenv('HTTP_CLIENT_IP')){ $client ...

  9. mysql 索引优化

    http://blog.jobbole.com/87107/ http://www.phpben.com/?post=74 http://blogread.cn/it/article/4088?f=s ...

  10. How To Install Kernel 3.10 On Ubuntu, Linux Mint, Debian and Derivates

    n this article I will show you how to install Linux Kernel 3.10 on Ubuntu 13.10 Saucy Salamander, Ub ...