设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac{1}{b-a}\int_a^b f^p(t)\rd t. \eex$$ 试求 $\dps{\vlm{p}x_p}$.

解答: 由 H\"older 不等式, $$\beex \bea f^p(x_p)&=\cfrac{1}{b-a}\int_a^b f^p(t)\cdot 1\rd t\\ &\leq \cfrac{1}{b-a}\sex{ \int_a^b f^{p\cdot\frac{p+1}{p}}(t)\rd t }^\frac{p}{p+1} \sex{ \int_a^b 1^{p+1}\rd t }^{\frac{1}{p+1}}\\ &=\cfrac{1}{b-a} \sex{\int_a^b f^{p+1}(t)\rd t}^{\frac{p}{p+1}} (b-a)^{\frac{1}{p+1}}\\ &=\sex{\cfrac{1}{b-a}\int_a^b f^{p+1}(t)\rd t}^\frac{p}{p+1}\\ &=f^p(x_{p+1}). \eea \eeex$$ 又 $f$ 严格递增, 我们有 $x_p\leq x_{p+1}$. 如此, $x_p$ 递增有上界. 由单调有界定理, $\dps{\vlm{p}x_p=x_\infty}$ 存在. 另外, $$\beex \bea f(x_p)&=\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}},\\ f(x_\infty)&=\vlm{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}} =\max_{a\leq t\leq b}f(t)=f(b),\\ x_\infty&=b, \eea \eeex$$ 其中第二个等式成立 (对 $f\geq 0$) 的理由如下. 显然, $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}} \leq \max_{a\leq t\leq b}f(t). \eex$$ 又设 $$\bex \exists\ \xi\in [a,b],\st f(\xi)=\max_{a\leq t\leq b}f(t). \eex$$ 而对 $\forall\ \ve>0$, 存在 $\xi$ 的某个左或右邻域 (因为 $\xi$ 可能为端点, 而只能如此说) $[c,d]$ 使得 $$\bex x\in [c,d]\ra f(x)\geq f(\xi)-\ve. \eex$$ 于是 $$\beex \bea \sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}&\geq \sez{\cfrac{1}{b-a}\int_c^d f^p(t)\rd t}^{\frac{1}{p}}\\ &\geq [f(\xi)-\ve] \sex{\cfrac{d-c}{b-a}}^{\frac{1}{p}}. \eea \eeex$$ 令 $p\to\infty$ 有 $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}\geq f(\xi)-\ve. \eex$$ 再令 $\ve\to 0^+$ 有 $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}\geq f(\xi). \eex$$

[再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  8. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  9. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. .NET CORE学习笔记系列(2)——依赖注入[6]: .NET Core DI框架[编程体验]

    原文https://www.cnblogs.com/artech/p/net-core-di-06.html 毫不夸张地说,整个ASP.NET Core框架是建立在一个依赖注入框架之上的,它在应用启动 ...

  2. 文本分类实战(九)—— ELMO 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  3. 基于SpringMVC拦截器和注解实现controller中访问权限控制

    SpringMVC的拦截器HandlerInterceptorAdapter对应提供了三个preHandle,postHandle,afterCompletion方法. preHandle在业务处理器 ...

  4. NodeJS之异常处理

    1. 为什么要处理异常? 如果我们不处理异常的话,直接会导致程序奔溃,用户体验比较差,因此我们要对异常进行处理,当出现异常的情况下,我们要给用户一个友好的提示,并且记录该异常,方便我们排查. 2. 在 ...

  5. .Net Core HttpClient 忽略https证书提醒

    在测试中经常会遇到请求一些https的url,但又没有本地证书,这时候可以用下面的方法忽略警告 var httpclientHandler = new HttpClientHandler(); htt ...

  6. 小议SQL数据插入

    --数据插入操作:INSERT INTO user_info(username,age) VALUES('ZHANGSAN',20);INSERT INTO user_info(username,ph ...

  7. 初识:java虚拟机的内存划分

    什么是内存? 内存是计算机中的重要原件,临时存储区域,作用是运行程序.我们编写的程序是存放在硬盘中的,在硬盘中的程序是不会运行的,必须放进内存中才能运行,运行完毕后会清空内存.Java虚拟机要运行程序 ...

  8. springboot打成jar后文件读取问题

    springboot打成的jar包里面不能用File去获取文件对象,只能用流的方式去读取. 获取方式: InputStream resourceAsStream  = 类名.class.getClas ...

  9. vue2.0 子组件和父组件之间的传值(转载)

    Vue是一个轻量级的渐进式框架,对于它的一些特性和优点在此就不做赘述,本篇文章主要来探讨一下Vue子父组件通信的问题 首先我们先搭好开发环境,我们首先得装好git和npm这两个工具(如果有不清楚的同学 ...

  10. ssh远程 和 上传/下载工具

    常用的ssh远程工具有: putty  : 软件体积小,开源免费. xshell  : 功能强大,亦有免费试用版本 SecureCRT  : 功能强大 ftp  : 该软件用于上传下载文件 通过ssh ...