Apple Tree POJ - 2486 (树形dp)
题目链接:
D - 树形dp
题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值
学习网址:https://blog.csdn.net/Aria461863631/article/details/82356420
具体思路:
dp[root][j][0]为从root出发,走j步并且最终回到原来点(中间也有可能回到原来的点,但是会继续往下走)的情况下,回到root节点的权值最大值。
dp[root][j][1]为从root出发,走j步并且最终不会到原来点(中间也有可能回到原来的点,但是会继续往下走)的情况下,回到root节点的权值最大值。
dp[root][j][0]=max(dp[root][j][0],dp[root][j-i][0]+dp[son][i-2][0]);
从当前的root出发,先计算从root开始走j-i步并且回到root的时候(遍历其他子树)的最大值,再加上走当前的son节点并且回来的时候最大值,
之所以是i-2的原因是,从s出发到t,然后从t再回到s,这一共是额外的两步,所以是i-2。
dp[root][j][1]=max(dp[root][j][1],dp[root][j-i][0]+dp[son][i-1][1]);
从当前的root出发,先计算从root出发走j-i步并且回到root的时候(遍历其他的子树)的最大值,在加上到达son,并且从son出发,不再回到root节点的最大值。
dp[root][j][1]=max(dp[root][j][1],dp[root][j-i][1]+dp[son][i-2][0]);
从当前root节点出发,先计算从root到son节点走i-2步并且回到root的时候的最大值,然后再去从root节点出发,到达剩余子树并且最终不回到root节点的最大值。
AC代码:
#include<iostream>
#include<stdio.h>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstring>
#include<vector>
using namespace std;
# define ll long long
const int maxn = 2e5+;
# define inf 0x3f3f3f3f
int dp[+][+][];
int vis[maxn];
int sto[maxn];
vector<int>Edge[maxn];
int n,k;
void init()
{
for(int i=; i<=n; i++)
{
vis[i]=;
Edge[i].clear();
// for(int j=0; j<=k; j++)
// {
// dp[i][j][0]=0;
// dp[i][j][1]=0;
// }
}
}
void dfs(int u,int dep)
{
for(int i=; i<=k; i++)
{
dp[u][i][]=dp[u][i][]=sto[u];
}
vis[u]=;
for(int i=; i<Edge[u].size(); i++)
{
int to=Edge[u][i];
if(vis[to])
continue;
dfs(to,dep-);
for(int i1=k; i1>=; i1--)
{
for(int i2=; i2<=i1; i2++) {
if(i2->=)
dp[u][i1][]=max(dp[u][i1][],
dp[u][i1-i2][]+dp[to][i2-][]);
if(i2->=)
dp[u][i1][]=max(dp[u][i1][],
dp[u][i1-i2][]+dp[to][i2-][]);
if(i2->=)
dp[u][i1][]=max(dp[u][i1][],
dp[u][i1-i2][]+dp[to][i2-][]);
}
}
}
}
int main()
{
while(~scanf("%d %d",&n,&k)){
int st,ed;
init();
for(int i=; i<=n; i++){
scanf("%d",&sto[i]);
}
for(int i=; i<n; i++){
scanf("%d %d",&st,&ed);
Edge[st].push_back(ed);
Edge[ed].push_back(st);
}
dfs(,k);
printf("%d\n",max(dp[][k][],dp[][k][]));
}
return ;
}
Apple Tree POJ - 2486 (树形dp)的更多相关文章
- Apple Tree POJ - 2486
Apple Tree POJ - 2486 题目大意:一棵点带权有根树,根节点为1.从根节点出发,走k步,求能收集的最大权值和. 树形dp.复杂度可能是O(玄学),不会超过$O(nk^2)$.(反正这 ...
- E - Apple Tree POJ - 2486
E - Apple Tree POJ - 2486 Wshxzt is a lovely girl. She likes apple very much. One day HX takes her t ...
- poj 2486( 树形dp)
题目链接:http://poj.org/problem?id=2486 思路:经典的树形dp,想了好久的状态转移.dp[i][j][0]表示从i出发走了j步最后没有回到i,dp[i][j][1]表示从 ...
- poj 2486 树形DP n选m连续路径
题目连接:http://acm.hust.edu.cn/vjudge/problem/18071 资料连接: http://blog.csdn.net/woshi250hua/article/deta ...
- 【POJ 2486】 Apple Tree(树型dp)
[POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8981 Acce ...
- Codeforces 791D Bear and Tree Jump(树形DP)
题目链接 Bear and Tree Jumps 考虑树形DP.$c(i, j)$表示$i$最少加上多少后能被$j$整除. 在这里我们要算出所有$c(i, k)$的和. 其中$i$代表每个点对的距离, ...
- Fire (poj 2152 树形dp)
Fire (poj 2152 树形dp) 给定一棵n个结点的树(1<n<=1000).现在要选择某些点,使得整棵树都被覆盖到.当选择第i个点的时候,可以覆盖和它距离在d[i]之内的结点,同 ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- poj 1463(树形dp)
题目链接:http://poj.org/problem?id=1463 思路:简单树形dp,如果不选父亲节点,则他的所有的儿子节点都必须选,如果选择了父亲节点,则儿子节点可选,可不选,取较小者. #i ...
随机推荐
- python科学计算库的numpy基础知识,完美抽象多维数组(原创)
#导入科学计算库 #起别名避免重名 import numpy as np #小技巧:从外往内看==从左往右看 从内往外看==从右往左看 #打印版本号 print(np.version.version) ...
- iptables之语法
一iptables概念 防火墙分类 分为硬件防火墙和软件防火墙 硬件防火墙一般放在外网的最前面,公司的拓扑的最外面 iptables虽然称为防火墙,但是不能当做整个公司的出口防火墙,和动戈几千万,几百 ...
- Go之运算符
逻辑运算符用于连接布尔型表达式.在Java中不同于数学的逻辑表达 3<X<5 ,java 中应该写成 x>3 & x<5 "&" 和&quo ...
- vue中watch检测到不到对象属性的变化的解决方法
watch: { option: { handler(newVal) { console.log(newVal); }, deep: true, immediate: true } }, 需要深层wa ...
- vue 倒计时组件
<template> <span> <i v-text="msg"></i> </span></template& ...
- codeforces8A
Train and Peter CodeForces - 8A Peter likes to travel by train. He likes it so much that on the trai ...
- Keras 获取中间某一层输出
1.使用函数模型API,新建一个model,将输入和输出定义为原来的model的输入和想要的那一层的输出,然后重新进行predict. #coding=utf-8 import seaborn as ...
- [openssh-server]install and enable ssh in debian9 / 在debian9上安装并启用ssh
新安装的debian9.8 with XFCE 发现没有ssh,下载debian-9.8.0-amd64-DVD-1.iso并挂在到ESXi虚拟机/media/cdrom0. 清空或保存/etc/ap ...
- python学习day21 面向对象(三)嵌套/特殊方法
1.嵌套 类/方法/对象都可以当做变量或嵌套到其他类型中. 函数的参数可以是任意类型. 可哈希(不可变)数据类型可以做字典的key. 类和对象可以做字典的key. 2.特殊方法(8) __init__ ...
- LOJ#2087 国王饮水记
解:这个题一脸不可做... 比1小的怎么办啊,好像没用,扔了吧. 先看部分分,n = 2简单,我会分类讨论!n = 4简单,我会搜索!n = 10,我会剪枝! k = 1怎么办,好像选的那些越大越好啊 ...