【BZOJ2423】最长公共子序列(动态规划)
【BZOJ2423】最长公共子序列(动态规划)
题面
题解
今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz。
对于如何\(O(n^2)\)求解最长的长度是很简单的。
设\(f[i][j]\)表示第一个串匹配到了\(i\),第二个串匹配到了\(j\)的最大长度。
那么转移很显然,要么\(i\)向后挪动一位,要么\(j\)向后挪动一位,要么\(i,j\)匹配上了。
也就是\(f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+1)\),最后一个转移当且仅当\(X[i]=Y[j]\)时才有。
考虑如何统计方案。显然是再记录一个数组\(g[i][j]\)表示到了\(f[i][j]\)时最长长度的方案数。
每次转移的时候如果长度一样则相加。
但是注意一个问题,当转移的时候,发现\(f[i-1][j],f[i][j-1],f[i-1][j-1]\)三者转移是相同的时候,
如果直接统计和的话,那么\(f[i-1][j-1]\)的方案会被重复计算两次,因此需要额外减去。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 100000000
#define ll long long
#define MAX 5005
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int f[2][MAX],g[2][MAX],n,m;
int ans=0,sum=0;
char s[MAX],w[MAX];
int main()
{
scanf("%s%s",s+1,w+1);
n=strlen(s+1)-1;m=strlen(w+1)-1;
for(int i=0;i<=m;++i)g[0][i]=1;
for(int i=1,nw=1,pw=0;i<=n;++i,nw^=1,pw^=1)
{
memset(f[nw],0,sizeof(f[nw]));
memset(g[nw],0,sizeof(g[nw]));
g[nw][0]=1;
for(int j=1;j<=m;++j)
{
if(s[i]==w[j])f[nw][j]=f[pw][j-1]+1,g[nw][j]=g[pw][j-1];
else f[nw][j]=max(f[nw][j-1],f[pw][j]);
if(f[nw][j]==f[nw][j-1])add(g[nw][j],g[nw][j-1]);
if(f[nw][j]==f[pw][j])add(g[nw][j],g[pw][j]);
if(f[nw][j]==f[pw][j]&&f[nw][j]==f[nw][j-1]&&f[nw][j]==f[pw][j-1])add(g[nw][j],MOD-g[pw][j-1]);
}
}
printf("%d\n%d\n",f[n&1][m],g[n&1][m]);
return 0;
}
【BZOJ2423】最长公共子序列(动态规划)的更多相关文章
- 【ACM】最长公共子序列 - 动态规划
最长公共子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列.tip:最长公共子序列也称作最 ...
- C++求解汉字字符串的最长公共子序列 动态规划
近期,我在网上看了一些动态规划求字符串最长公共子序列的代码.可是无一例外都是处理英文字符串,当处理汉字字符串时.常常会出现乱码或者不对的情况. 我对代码进行了改动.使用wchar_t类型存储字 ...
- nyoj 36-最长公共子序列 (动态规划,DP, LCS)
36-最长公共子序列 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:18 submit:38 题目描述: 咱们就不拐弯抹角了,如题,需要你做的就是写 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 动态规划(一)——最长公共子序列和最长公共子串
注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式 ...
- 动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...
- [BZOJ2423][HAOI2010]最长公共子序列
[BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...
- 算法导论-动态规划(最长公共子序列问题LCS)-C++实现
首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2 ...
随机推荐
- ThreadPoolExecutor 使用说明
它是一个ExecutorService,使用线程池中的线程执行提交的任务.通常我们使用Executors框架,定义使用. 线程池主要用来解决两类问题:通过缓存一定数量的可用线程,避免频繁的线程创建,销 ...
- 环境变量的配置-java-JMETER - 【Linux】
rz上传 lz下载 步骤: . Linux下首先安装Jdk: . 下载apache-jmeter-4.0.tgz,复制到Linux系统中的/opt目录下: . 解压apache-jmeter-4.0. ...
- RPC之Jersey服务调用处理(一)
1.定义: 远程过程调用, 也叫远程函数调用, 最早出现在Sun公司和HP公司的运行Unix操作系统的计算机中,用于系统间通信的一种机制. RPC的基本通信模型是基于Cli ...
- JS如何设置元素样式的方法示例
<div id="box"></div> <script> var box = document.getElementById("bo ...
- ubuntu HackRF One相关环境搭建
本文内容.开发板及配件仅限用于学校或科研院所开展科研实验! 淘宝店铺名称:开源SDR实验室 HackRF链接:https://item.taobao.com/item.htm?spm=a1z10.1- ...
- MUI的踩坑笔记
最近在做公司项目的手机端实现,稍微记录下遇到的坑 1.在app开发中,若要使用HTML5+扩展api,必须等plusready事件发生后才能正常使用,mui将该事件封装成了mui.plusReady( ...
- BP神经网络算法推导
目录 前置知识 梯度下降法 激活函数 多元复合函数求偏导的相关知识 正向计算 符号定义 输入层 隐含层 输出层 误差函数 反向传播 输出层与隐含层之间的权值调整 隐含层与输入层之间权值的调整 计算步骤 ...
- 字符串匹配:KMP算法, Boyer-Moore算法理解与总结
1. KMP算法是前缀匹配算法,一次从前往后匹配的过程中,根据已经部分匹配的信息,在文本中,移动尽可能远的距离.而不是按照朴素模式匹配方法,每次都只移动一个位置. 比如这个示例,在文本串中从4(从0开 ...
- React Native iOS 离线包
平时使用React Native 时候, js代码和图片资源运行在一个Debug Server上(需要cd 到RN目录,然后终端执行 npm start 命令开启本地服务 ).每次更新代码之后只需要使 ...
- #1490 : Tree Restoration-(微软2017在线笔试)
输入n m km个数,表示每层的节点个数接下来m行是每层的节点,节点顺序是从左往右的k个叶子节点k*k个矩阵,表示叶子节点之间的距离 输出:每个节点的父亲节点编号,root节点是0 题解:1.很明显, ...