【BZOJ2423】最长公共子序列(动态规划)

题面

BZOJ

洛谷

题解

今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz。

对于如何\(O(n^2)\)求解最长的长度是很简单的。

设\(f[i][j]\)表示第一个串匹配到了\(i\),第二个串匹配到了\(j\)的最大长度。

那么转移很显然,要么\(i\)向后挪动一位,要么\(j\)向后挪动一位,要么\(i,j\)匹配上了。

也就是\(f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+1)\),最后一个转移当且仅当\(X[i]=Y[j]\)时才有。

考虑如何统计方案。显然是再记录一个数组\(g[i][j]\)表示到了\(f[i][j]\)时最长长度的方案数。

每次转移的时候如果长度一样则相加。

但是注意一个问题,当转移的时候,发现\(f[i-1][j],f[i][j-1],f[i-1][j-1]\)三者转移是相同的时候,

如果直接统计和的话,那么\(f[i-1][j-1]\)的方案会被重复计算两次,因此需要额外减去。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 100000000
#define ll long long
#define MAX 5005
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int f[2][MAX],g[2][MAX],n,m;
int ans=0,sum=0;
char s[MAX],w[MAX];
int main()
{
scanf("%s%s",s+1,w+1);
n=strlen(s+1)-1;m=strlen(w+1)-1;
for(int i=0;i<=m;++i)g[0][i]=1;
for(int i=1,nw=1,pw=0;i<=n;++i,nw^=1,pw^=1)
{
memset(f[nw],0,sizeof(f[nw]));
memset(g[nw],0,sizeof(g[nw]));
g[nw][0]=1;
for(int j=1;j<=m;++j)
{
if(s[i]==w[j])f[nw][j]=f[pw][j-1]+1,g[nw][j]=g[pw][j-1];
else f[nw][j]=max(f[nw][j-1],f[pw][j]);
if(f[nw][j]==f[nw][j-1])add(g[nw][j],g[nw][j-1]);
if(f[nw][j]==f[pw][j])add(g[nw][j],g[pw][j]);
if(f[nw][j]==f[pw][j]&&f[nw][j]==f[nw][j-1]&&f[nw][j]==f[pw][j-1])add(g[nw][j],MOD-g[pw][j-1]);
}
}
printf("%d\n%d\n",f[n&1][m],g[n&1][m]);
return 0;
}

【BZOJ2423】最长公共子序列(动态规划)的更多相关文章

  1. 【ACM】最长公共子序列 - 动态规划

    最长公共子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列.tip:最长公共子序列也称作最 ...

  2. C++求解汉字字符串的最长公共子序列 动态规划

        近期,我在网上看了一些动态规划求字符串最长公共子序列的代码.可是无一例外都是处理英文字符串,当处理汉字字符串时.常常会出现乱码或者不对的情况. 我对代码进行了改动.使用wchar_t类型存储字 ...

  3. nyoj 36-最长公共子序列 (动态规划,DP, LCS)

    36-最长公共子序列 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:18 submit:38 题目描述: 咱们就不拐弯抹角了,如题,需要你做的就是写 ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  6. 动态规划(一)——最长公共子序列和最长公共子串

    注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式 ...

  7. 动态规划 - 最长公共子序列(LCS)

    最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...

  8. [BZOJ2423][HAOI2010]最长公共子序列

    [BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...

  9. 算法导论-动态规划(最长公共子序列问题LCS)-C++实现

    首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2  ...

随机推荐

  1. 统计学习方法c++实现之二 k近邻法

    统计学习方法c++实现之二 k近邻算法 前言 k近邻算法可以说概念上很简单,即:"给定一个训练数据集,对新的输入实例,在训练数据集中找到与这个实例最邻近的k个实例,这k个实例的多数属于某个类 ...

  2. 5. 使用Flask蓝图(blueprint)

    一直到现在都没有怎么写代码,可能更得比较慢. 作业回顾 先来看一下文章4的作业吧,使用logbook的时候,遇到了时区不对的情况.那么我们怎么去解决这个问题呢? 实际上logbook默认采用的是世界标 ...

  3. HTML文件转Word文件格式

    这是我需要转换的HTML文件 第一步~ 使用我们的福昕阅读器将我们.html文件打开,如下图 第二步: 点击“文件”——“另存为”——选择一个你自己喜欢的位置存放文件,此时的文件已经被转换成了.pdf ...

  4. 小刘的深度学习---CNN

    前言: 前段时间我在树莓派上通过KNN,SVM等机器学习的算法实现了门派识别的项目,所用到的数据集是经典的MNIST.可能是因为手写数字与印刷体存在一些区别,识别率并是很不高.基于这样的情况,我打算在 ...

  5. linux压缩相关

    tar命令 tar是打包,即把好多东西放在一个大文件里面,之后再压缩:当然也可以解包 tar的几个参数说明: -c 创建一个新的包 -x 将包里的文件还原出来 -t 显示包内文件的列表 -f 指定要处 ...

  6. java并发编程原理

    一.java内存模型 Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样底层细节.此处的变量与Java编程时所说的变量不一样,指包括了实例字段 ...

  7. 实验1 熟悉Linux开发环境 实验报告

    参见http://www.cnblogs.com/lhc-java/p/4970269.html

  8. Task 6.4 冲刺Two之站立会议3

    今天我参考各种聊天软件的主界面,仿照他们的形式对其中的界面和功能进行设置.重新完善了一下昨天完成的主要功能结构的框架.将各个功能按钮分别放到相应的位置,使界面看起来更加地合理,易于接受.

  9. 《Spring1之第五次站立会议》

    <第五次站立会议> 昨天:试着做了一下主框架里的在线人数的显示代码: 今天:向小伙伴们请教了我代码的错误的解决方法以及对TCP/IP协议进行了相关的了解. 遇到的问题:虽然基本原理不难理解 ...

  10. Software-Defined Networking A Comprehensive Survey(一)

    传统网络:1 复杂,难于管理 2 很难实现根据之前定义的方案进行配置,3 对于缺陷.变化不能够再次进行配置 4 控制和数据平面绑定在一起,使许多缺陷难于解决 SDN网络:通过打破传统网络垂直整合,从底 ...