矩阵乘法+\(AC\)自动机

是道很不错的题了

首先是前六十分,就是一个\(AC\)自动机上的套路\(dp\),设\(dp[i][j]\)表示匹配出的长度为\(i\)在自动机上位置为\(j\)的方案数,转移的话就枚举下一个单词选择哪个放到自动机上一波匹配就好了

后面\(40\)分强行变成了另外一道题,\(L\)变成了\(1e8\),一看就是矩乘的复杂度了

但是单词的长度都非常小,于是转移\(dp[i][j]\)的时候只需要从\(dp[i-1][]\)和\(dp[i-2][]\)里转移,发现这非常像斐波那契的转移,于是提前在\(ac\)机上的每个位置都处理一下对应的转移之后矩乘就好了

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#define re register
#define LL long long
#define maxn 205
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const LL mod=1e9+7;
char S[maxn];
int fail[maxn],flag[maxn],son[maxn][26];
char T[55][maxn],len[maxn];
int n,m,L,cnt;
inline void ins()
{
scanf("%s",S+1);
int len=strlen(S+1),now=0;
for(re int i=1;i<=len;i++)
{if(!son[now][S[i]-'a']) son[now][S[i]-'a']=++cnt;now=son[now][S[i]-'a'];}
flag[now]=1;
}
inline void Build()
{
std::queue<int> q;
for(re int i=0;i<26;i++) if(son[0][i]) q.push(son[0][i]);
while(!q.empty())
{
int k=q.front();q.pop();
flag[k]|=flag[fail[k]];
for(re int i=0;i<26;i++)
if(son[k][i]) fail[son[k][i]]=son[fail[k]][i],q.push(son[k][i]);
else son[k][i]=son[fail[k]][i];
}
}
namespace solve1
{
int dp[maxn][maxn];
inline int query(int x,int y)
{
int now=x;
for(re int i=1;i<=len[y];i++)
{
if(flag[now]) return -1;
now=son[now][T[y][i]-'a'];
}
if(flag[now]) return -1;
return now;
}
inline void work()
{
dp[0][0]=1;
for(re int i=0;i<L;i++)
for(re int j=0;j<=cnt;j++)
for(re int k=1;k<=n;k++)
{
if(i+len[k]>L) continue;
if(!dp[i][j]) continue;
int v=query(j,k);
if(v==-1) continue;
dp[i+len[k]][v]=(dp[i+len[k]][v]+dp[i][j])%mod;
}
int ans=0;
for(re int i=0;i<=cnt;i++) ans=(ans+dp[L][i])%mod;
printf("%d\n",ans);
}
}
namespace solve2
{
LL ans[maxn][maxn],a[maxn][maxn];
int M;
inline void did_a()
{
LL mid[maxn][maxn];
for(re int i=0;i<=M;i++)
for(re int j=0;j<=M;j++) mid[i][j]=a[i][j],a[i][j]=0;
for(re int k=0;k<=M;k++)
for(re int i=0;i<=M;i++)
for(re int j=0;j<=M;j++)
{a[i][j]+=((mid[i][k]*mid[k][j])%mod);if(a[i][j]>mod) a[i][j]%=mod;}
}
inline void did_ans()
{
LL mid[maxn][maxn];
for(re int i=0;i<=M;i++)
for(re int j=0;j<=M;j++) mid[i][j]=ans[i][j],ans[i][j]=0;
for(re int k=0;k<=M;k++)
for(re int i=0;i<=M;i++)
for(re int j=0;j<=M;j++)
{ans[i][j]+=((a[i][k]*mid[k][j])%mod);if(ans[i][j]>mod) ans[i][j]%=mod;}
}
inline void quick(int b){while(b) {if(b&1) did_ans();b>>=1;did_a();}}
inline void work()
{
M=cnt+cnt+1;
for(re int i=0;i<=cnt;i++)
{
if(flag[i]) continue;
for(re int j=1;j<=n;j++)
if(len[j]==1)
{
int v=son[i][T[j][1]-'a'];
if(!flag[v]) a[v+cnt+1][i+cnt+1]++;
}
else if(len[j]==2)
{
int v=son[i][T[j][1]-'a'];
int vv=son[v][T[j][2]-'a'];
if(flag[v]||flag[vv]) continue;
a[vv+cnt+1][i]++;
}
}
for(re int j=cnt+1;j<=M;j++) a[j-cnt-1][j]++;
for(re int i=0;i<=M;i++) ans[i][i]=1;
quick(L);
LL Ans=0;
for(re int i=cnt+1;i<=M;i++) Ans=(ans[i][cnt+1]+Ans)%mod;
printf("%lld\n",Ans);
}
}
int main()
{
scanf("%d%d%d",&n,&m,&L);
for(re int i=1;i<=n;i++) scanf("%s",T[i]+1),len[i]=strlen(T[i]+1);
for(re int i=1;i<=m;i++) ins();
Build();
if(L<=100) solve1::work();
else solve2::work();
return 0;
}

【[BJOI2017]魔法咒语】的更多相关文章

  1. bzoj4861 / P3715 [BJOI2017]魔法咒语

    P3715 [BJOI2017]魔法咒语 AC自动机+dp+矩阵乘法 常规思路是按基本串建立AC自动机 然鹅这题是按禁忌串建立AC自动机 对后缀是禁忌的点以及它的失配点做上标记$(a[i].ed)$, ...

  2. [BJOI2017]魔法咒语 --- AC自动机 + 矩阵优化

    bzoj 4860   LOJ2180   洛谷P3175 [BJOI2017]魔法咒语 题目描述: Chandra 是一个魔法天才. 从一岁时接受火之教会洗礼之后,Chandra 就显示出对火元素无 ...

  3. Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂)

    Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂) 题目链接 题解: 多串匹配问题,很容易想到是AC自动机 先构建忌讳词语的AC自动机,构建时顺便记录一下这个点以及它的所有后 ...

  4. P3715 [BJOI2017]魔法咒语

    P3715 [BJOI2017]魔法咒语 用基本词汇组成\(L\)长度的单词,其中不能包含禁忌词汇 用禁忌词汇建强大的\(tire\)图 解决: 分类讨论,\(L<=100\)用普通dp暴力在\ ...

  5. [BZOJ4861][BJOI2017]魔法咒语(AC自动机+矩阵优化DP)

    4861: [Beijing2017]魔法咒语 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 217  Solved: 105[Submit][Sta ...

  6. [BJOI2017]魔法咒语

    Description Chandra 是一个魔法天才. 从一岁时接受火之教会洗礼之后, Chandra 就显示出对火元素无与伦比的亲和力,轻而易举地学会种种晦涩难解的法术.这也多亏 Chandra ...

  7. 【题解】AC自动机题解合集

    最近貌似大家都在搞字符串?很长一段时间都没有写博客了……还是补一补坑吧. 感觉AC自动机真的非常优美了,通过在trie树上建立fail指针可以轻松解决多模匹配的问题.实际上在AC自动机上的匹配可以看做 ...

  8. AHOI2018训练日程(3.10~4.12)

    (总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...

  9. Trie图(AC自动机)总结

    AC自动机构建完成后,某个节点沿着Fail链向上能从长到短走到自己的所有后缀.一般的,遍历主串进行匹配,就是在Trie图上定向移动的过程. 构造(一遍 BFS) void build_AC() { ; ...

随机推荐

  1. MVC登陆认证简单设置

    首先,弄个基类 /// <summary> /// 所有控制器基类,里面重写了OnActionExecuted方法 /// </summary> public class Ba ...

  2. [日常] json_encode对中文和引号的处理差异研究

    json_encode()1.默认就是把所有 ASCII 可显示字符以外的统统转义为 Unicode如果把那些字符转义为 Unicode 之后,无论文件编码是否一致,都不会出现乱码,因此中文转成Uni ...

  3. SQLite的Integer类型

    SQLite 中的 INTEGER:带符号的整型,具体取决有存入数字的范围大小,根据大小可以使用1,2,3,4,6,8字节来存储. 在SQLite中,存储分类和数据类型也有一定的差别,如INTEGER ...

  4. 南阳nyoj 509 因子和阶乘

    因子和阶乘 时间限制:1000 ms  |  内存限制:65535 KB 难度:2  http://acm.nyist.net/JudgeOnline/problem.php?pid=509 描述 给 ...

  5. HDU4336 Card Collector(期望 状压 MinMax容斥)

    题意 题目链接 \(N\)个物品,每次得到第\(i\)个物品的概率为\(p_i\),而且有可能什么也得不到,问期望多少次能收集到全部\(N\)个物品 Sol 最直观的做法是直接状压,设\(f[sta] ...

  6. linux解压tar.gz

    gnuzip或者tar -zxvf file.tar.gz unzip file.zip

  7. .net开发环境搭建

    本地开发环境下载网址:https://msdn.itellyou.cn/,选择个人免费版本 下载工具 下载安装win7系统选择asp.net 和web开发,右侧可选全部选择,大约11GB左右

  8. elixir 基础数据结构

     Elixir中的一些基础的数据结构:整数,浮点数,字符串,原子,列表,元组  整数,浮点数,字符串 跟其他语言差不多  原子:名字为值的常量  在ruby类似Symbols  在erlang是用大写 ...

  9. 使用Keras进行多GPU训练 multi_gpu_model

    使用Keras训练具有多个GPU的深度神经网络(照片来源:Nor-Tech.com). 摘要 在今天的博客文章中,我们学习了如何使用多个GPU来训练基于Keras的深度神经网络. 使用多个GPU使我们 ...

  10. 转: Dubbo远程调用服务框架原理与示例

    Dubbo 是阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能的 RPC 实现服务的输出和输入功能,可以和  Spring 框架无缝集成. 主要核心部件: Remoting:  网络通 ...