UVa 10214 - Trees in a Wood.(欧拉函数)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1155
题意:
在满足|x|≤a,|y|≤b(a≤2000,b≤2000000)的网格中,除了原点之外的整点(即x,y坐标均为整数的点)各种着一棵树。
树的半径可以忽略不计,但是可以相互遮挡。求从原点能看到多少棵树。
设这个值为K,要求输出K/N,其中N为网格中树的总数。
分析:
显然4个坐标轴上各只能看见一棵树,所以可以只数第一象限(即x>0,y>0),答案乘以4后加4。
第一象限的所有x, y都是正整数,能看到(x,y),当且仅当gcd(x,y)=1。
由于a范围比较小,b范围比较大,一列一列统计比较快。
第x列能看到的树的个数等于0<y≤b的数中满足gcd(x,y)=1的y的个数。可以分区间计算。
1≤y≤x:有phi(x)个,这是欧拉函数的定义。
x+1≤y≤2x:也有phi(x)个,因为gcd(x+i,x)=gcd(x,i)。
2x+1≤y≤3x:也有phi(x)个,因为gcd(2x+i,x)=gcd(x,i)。
……
kx+1≤y≤b:直接统计,需要O(x)时间。
代码:
import java.io.*;
import java.util.*; public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
final int UP = 2000 + 5;
int a, b, phi[] = new int[UP]; void constant() {
phi[1] = 1;
for(int i = 2; i < UP; i++) phi[i] = 0;
for(int i = 2; i < UP; i++) if(phi[i] == 0) {
for(int t = i; t < UP; t += i) {
if(phi[t] == 0) phi[t] = t;
phi[t] = phi[t] / i * (i-1);
}
}
} int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
} long black() {
long res = 0;
for(int i = 1; i <= a; i++) {
int k = b / i;
res += k * phi[i];
for(int t = k*i+1; t <= b; t++) {
if(gcd(i,t) == 1) res++;
}
}
return res * 4 + 4;
} void MAIN() {
constant(); // 预处理欧拉函数值
while(true) {
a = cin.nextInt();
b = cin.nextInt();
if(a + b == 0) break;
long all = (2*a+1L) * (2*b+1L) - 1;
System.out.printf("%.7f\n", (double)black() / all);
}
} public static void main(String args[]) { new Main().MAIN(); }
}
UVa 10214 - Trees in a Wood.(欧拉函数)的更多相关文章
- UVA 10214 Trees in a Wood(欧拉函数)
题意:给你a.b(a<=2000,b<=2000000),问你从原点可以看到范围在(-a<=x<=a,-b<=y<=b)内整数点的个数 题解:首先只需要计算第一象限 ...
- UVA 10214 Trees in a Wood
https://vjudge.net/problem/UVA-10214 题意:你站在原点,每个坐标位置有一棵高度相同的树,问能看到多少棵树 ans=Σ gcd(x,y)=1 欧拉函数搞搞 #incl ...
- UVa 10820 - Send a Table(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)题解
思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...
- UVa 10214 Trees in a Wood. (数论-欧拉函数)
题意:给定一个abs(x) <= a, abs(y) <= b,除了原点之外的整点各有一棵树,可以相互阻挡,求从原点可以看到多少棵树. 析:由于a < b,所以我们可以一列一列的统计 ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 GCD - Extreme (II) (数论|欧拉函数)
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
随机推荐
- Flume - 快速入门
关于Flume,官方定义如下: Apache Flume is a distributed, reliable, and available system for efficiently collec ...
- C# 的逻辑运算
&.^.!和|操作符称为逻辑操作符,用逻辑操作符把运算对象连接起来符合C#语法的式子称为逻辑表达式.逻辑 操作符“!”和“^”只作用于其后的操作数,故称为一元操作符.而“&&” ...
- 阿里云搭建hadoop集群服务器,内网、外网访问问题(详解。。。)
这个问题花费了我将近两天的时间,经过多次试错和尝试,现在想分享给大家来解决此问题避免大家入坑,以前都是在局域网上搭建的hadoop集群,并且是局域网访问的,没遇见此问题. 因为阿里云上搭建的hadoo ...
- MQ疑难杂症小记
为什么使用消息队列? 什么业务场景,这个业务场景有个什么技术挑战,如果不用MQ可能会很麻烦,但是你现在用了MQ之后带给了你很多的好处.消息队列的常见使用场景,其实场景有很多,但是比较核心的有3个:解耦 ...
- spring事务注解失效问题
问题描述: 由于工作需要,需要在spring中配置两个数据源,有一天突然发现@Transactional注解失效 环境框架: springmvc+spring+spring jdbcTemplate ...
- 第二十六天- C/S架构 通信流程 socket
1.C/S架构 C/S架构:Client与Server ,中文意思:客户端与服务器端架构,这种架构也是从用户层面(也可是物理层面)来划分的.这里客户端一般指需先安装再执行的应用程序,对操作系统依赖性较 ...
- 区别String、StringBuilder、Stringbuffer的总结
1.三者在执行速度上: StringBuilder > StringBuffer > String 2. String:不可变长字符串 StringBuilder : 为可变长字符串 St ...
- 获取本地IP地址的vc代码
作者:朱金灿 来源:http://blog.csdn.net/clever101 获取本地IP地址有两种做法.一种是使用gethostname函数,代码如下: bool CSocketComm::Ge ...
- OpenGL学习--开发环境
1. VS2017 Professional安装 1.1. 下载 mu_visual_studio_professional_2017_x86_x64_10049787.exe 1.2. 双击开始安装 ...
- 云数据库Redis版256M双机热备款
云数据库Redis版是兼容Redis协议标准的.提供持久化的缓存式数据库服务,基于高可靠双机热备架构:全新推出的256M小规格款,适用于高QPS.小数据量业务,并支持免费全量迁移,完美服务于个人开发者 ...