链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1155

题意:

在满足|x|≤a,|y|≤b(a≤2000,b≤2000000)的网格中,除了原点之外的整点(即x,y坐标均为整数的点)各种着一棵树。
树的半径可以忽略不计,但是可以相互遮挡。求从原点能看到多少棵树。
设这个值为K,要求输出K/N,其中N为网格中树的总数。

分析:

显然4个坐标轴上各只能看见一棵树,所以可以只数第一象限(即x>0,y>0),答案乘以4后加4。
第一象限的所有x, y都是正整数,能看到(x,y),当且仅当gcd(x,y)=1。
由于a范围比较小,b范围比较大,一列一列统计比较快。
第x列能看到的树的个数等于0<y≤b的数中满足gcd(x,y)=1的y的个数。可以分区间计算。
1≤y≤x:有phi(x)个,这是欧拉函数的定义。
x+1≤y≤2x:也有phi(x)个,因为gcd(x+i,x)=gcd(x,i)。
2x+1≤y≤3x:也有phi(x)个,因为gcd(2x+i,x)=gcd(x,i)。
……
kx+1≤y≤b:直接统计,需要O(x)时间。

代码:

 import java.io.*;
import java.util.*; public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
final int UP = 2000 + 5;
int a, b, phi[] = new int[UP]; void constant() {
phi[1] = 1;
for(int i = 2; i < UP; i++) phi[i] = 0;
for(int i = 2; i < UP; i++) if(phi[i] == 0) {
for(int t = i; t < UP; t += i) {
if(phi[t] == 0) phi[t] = t;
phi[t] = phi[t] / i * (i-1);
}
}
} int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
} long black() {
long res = 0;
for(int i = 1; i <= a; i++) {
int k = b / i;
res += k * phi[i];
for(int t = k*i+1; t <= b; t++) {
if(gcd(i,t) == 1) res++;
}
}
return res * 4 + 4;
} void MAIN() {
constant(); // 预处理欧拉函数值
while(true) {
a = cin.nextInt();
b = cin.nextInt();
if(a + b == 0) break;
long all = (2*a+1L) * (2*b+1L) - 1;
System.out.printf("%.7f\n", (double)black() / all);
}
} public static void main(String args[]) { new Main().MAIN(); }
}

UVa 10214 - Trees in a Wood.(欧拉函数)的更多相关文章

  1. UVA 10214 Trees in a Wood(欧拉函数)

    题意:给你a.b(a<=2000,b<=2000000),问你从原点可以看到范围在(-a<=x<=a,-b<=y<=b)内整数点的个数 题解:首先只需要计算第一象限 ...

  2. UVA 10214 Trees in a Wood

    https://vjudge.net/problem/UVA-10214 题意:你站在原点,每个坐标位置有一棵高度相同的树,问能看到多少棵树 ans=Σ gcd(x,y)=1 欧拉函数搞搞 #incl ...

  3. UVa 10820 - Send a Table(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVA 11426 GCD - Extreme (II) (欧拉函数)题解

    思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...

  5. UVa 10214 Trees in a Wood. (数论-欧拉函数)

    题意:给定一个abs(x) <= a, abs(y) <= b,除了原点之外的整点各有一棵树,可以相互阻挡,求从原点可以看到多少棵树. 析:由于a < b,所以我们可以一列一列的统计 ...

  6. UVA 11426 GCD - Extreme (II) (欧拉函数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard ...

  7. UVA 11426 GCD - Extreme (II) (数论|欧拉函数)

    题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...

  8. UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.

    题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...

  9. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

随机推荐

  1. [javaEE] http协议详细

    上一篇:http://www.cnblogs.com/taoshihan/p/5346731.html HTTP请求 请求行 GET /taoshihan/p/5346731.html HTTP/1. ...

  2. commons-fileupload-1.4使用及问题

    文件上传 使用commons-fileupload-1.4控件及依赖的commons-io-2.6控件 jsp页面中内容 <form action="../servlet/FileUp ...

  3. 【基于初学者的SSH】struts02 数据封装的三种方式详解

    struts的数据封装共有3中方式,属性封装,模型驱动封装和表达式封装,其中表达式封装为常用 一:属性封装: 属性封装其实就是自己定义变量,注意变量名要和表单的name属性名一致,然后生成get和se ...

  4. python 查询数据库返回的数据类型

    self.conn=MySQLdb.connect(host='localhost',port=3306, user='keystone', passwd='OptValley@4312', db=s ...

  5. 各种IDE的使用

    sharpdevelop http://blog.sina.com.cn/s/blog_d1001bff0101di7p.html

  6. EF 多种查询方式

    比较常用的查询方式linq to entity,这里先看一种写法: var query = (from d in testContext.Set<DepartPerson>() //查询和 ...

  7. 关系型数据库基本概念及MySQL简述

    数据库基本概念">关系型数据库基本概念 数据库: 对大量信息进行管理的高效解决方案. 按照数据结构来组织.存储和管理数据的库. 数据库系统(DBS,DATABASE SYSTEM): ...

  8. 梯度下降法实现最简单线性回归问题python实现

    梯度下降法是非常常见的优化方法,在神经网络的深度学习中更是必会方法,但是直接从深度学习去实现,会比较复杂.本文试图使用梯度下降来优化最简单的LSR线性回归问题,作为进一步学习的基础. import n ...

  9. 全局唯一ID生成器

    分布式环境中,如何保证生成的id是唯一不重复的? twitter,开源出了一个snowflake算法,现在很多企业都按照该算法作为参照,实现了自己的一套id生成器. 该算法的主要思路为: 刚好64位的 ...

  10. RESET MASTER和RESET SLAVE使用场景和说明

    [前言]在配置主从的时候经常会用到这两个语句,刚开始的时候还不清楚这两个语句的使用特性和使用场景. 经过测试整理了以下文档,希望能对大家有所帮助: [一]RESET MASTER参数 功能说明:删除所 ...