浅谈 Adaboost 算法
http://blog.csdn.net/haidao2009/article/details/7514787
菜鸟最近开始学习machine learning。发现adaboost 挺有趣,就把自己的一些思考写下来。
主要参考了http://stblog.baidu-tech.com/?p=19,其实说抄也不为过,但是我添加了一些我认为有意思的东西,所以我还是把它贴出来了,呵呵。
一 Boosting 算法的起源
boost 算法系列的起源来自于PAC Learnability(PAC 可学习性)。这套理论主要研究的是什么时候一个问题是可被学习的,当然也会探讨针对可学习的问题的具体的学习算法。这套理论是由Valiant提出来的,也因此(还有其他贡献哈)他获得了2010年的图灵奖。这里也贴出Valiant的头像,表示下俺等菜鸟的膜拜之情。哈哈哈


PAC 定义了学习算法的强弱
弱学习算法---识别错误率小于1/2(即准确率仅比随机猜测略高的学习算法)
强学习算法---识别准确率很高并能在多项式时间内完成的学习算法
同时 ,Valiant和 Kearns首次提出了 PAC学习模型中弱学习算法和强学习算法的等价性问题,即任意给定仅比随机猜测略好的弱学习算法 ,是否可以将其提升为强学习算法 ? 如果二者等价 ,那么只需找到一个比随机猜测略好的弱学习算法就可以将其提升为强学习算法 ,而不必寻找很难获得的强学习算法。 也就是这种猜测,让无数牛人去设计算法来验证PAC理论的正确性。
不过很长一段时间都没有一个切实可行的办法来实现这个理想。细节决定成败,再好的理论也需要有效的算法来执行。终于功夫不负有心人, Schapire在1996年提出一个有效的算法真正实现了这个夙愿,它的名字叫AdaBoost。AdaBoost把多个不同的决策树用一种非随机的方式组合起来,表现出惊人的性能!第一,把决策树的准确率大大提高,可以与SVM媲美。第二,速度快,且基本不用调参数。第三,几乎不Overfitting。我估计当时Breiman和Friedman肯定高兴坏了,因为眼看着他们提出的CART正在被SVM比下去的时候,AdaBoost让决策树起死回生!Breiman情不自禁地在他的论文里赞扬AdaBoost是最好的现货方法(off-the-shelf,即“拿下了就可以用”的意思)。(这段话摘自统计学习那些事)
了解了这段有意思的起源,下面来看adaboost算法应该会兴趣大增。
二 Boosting算法的发展历史(摘自http://stblog.baidu-tech.com/?p=19)
Boosting算法是一种把若干个分类器整合为一个分类器的方法,在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合 为一个分类器的方法,即boostrapping方法和bagging方法。我们先简要介绍一下bootstrapping方法和bagging方法。
1)bootstrapping方法的主要过程
主要步骤:
i)重复地从一个样本集合D中采样n个样本
ii)针对每次采样的子样本集,进行统计学习,获得假设Hi
iii)将若干个假设进行组合,形成最终的假设Hfinal
iv)将最终的假设用于具体的分类任务
2)bagging方法的主要过程 -----bagging可以有多种抽取方法
主要思路:
i)训练分类器
从整体样本集合中,抽样n* < N个样本 针对抽样的集合训练分类器Ci
ii)分类器进行投票,最终的结果是分类器投票的优胜结果
但是,上述这两种方法,都只是将分类器进行简单的组合,实际上,并没有发挥出分类器组合的威力来。直到1989年,Yoav Freund与 Robert Schapire提出了一种可行的将弱分类器组合为强分类器的方法。并由此而获得了2003年的哥德尔奖(Godel price)。
Schapire还提出了一种早期的boosting算法,其主要过程如下:
i)从样本整体集合D中,不放回的随机抽样n1 < n个样本,得到集合 D1
训练弱分类器C1
ii)从样本整体集合D中,抽取 n2 < n个样本,其中合并进一半被C1 分类错误的样本。得到样本集合D2
训练弱分类器C2
iii)抽取D样本集合中,C1 和 C2 分类不一致样本,组成D3
训练弱分类器C3
iv)用三个分类器做投票,得到最后分类结果
到了1995年,Freund and schapire提出了现在的adaboost算法,其主要框架可以描述为:
i)循环迭代多次
更新样本分布
寻找当前分布下的最优弱分类器
计算弱分类器误差率
ii)聚合多次训练的弱分类器
三 Adaboost 算法
AdaBoost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,即弱分类器,然后把这些弱分类器集合起来,构造一个更强的最终分类器。(很多博客里说的三个臭皮匠赛过诸葛亮)
算法本身是改变数据分布实现的,它根据每次训练集之中的每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改权值的新数据送给下层分类器进行训练,然后将每次训练得到的分类器融合起来,作为最后的决策分类器。
完整的adaboost算法如下


简单来说,Adaboost有很多优点:
1)adaboost是一种有很高精度的分类器
2)可以使用各种方法构建子分类器,adaboost算法提供的是框架
3)当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单
4)简单,不用做特征筛选
5)不用担心overfitting!
四 Adaboost 举例
也许你看了上面的介绍或许还是对adaboost算法云里雾里的,没关系,百度大牛举了一个很简单的例子,你看了就会对这个算法整体上很清晰了。
下面我们举一个简单的例子来看看adaboost的实现过程:

图中,“+”和“-”分别表示两种类别,在这个过程中,我们使用水平或者垂直的直线作为分类器,来进行分类。
第一步:

根据分类的正确率,得到一个新的样本分布D2,一个子分类器h1
其中划圈的样本表示被分错的。在右边的途中,比较大的“+”表示对该样本做了加权。
也许你对上面的ɛ1,ɑ1怎么算的也不是很理解。下面我们算一下,不要嫌我啰嗦,我最开始就是这样思考的,只有自己把算法演算一遍,你才会真正的懂这个算法的核心,后面我会再次提到这个。
算法最开始给了一个均匀分布 D 。所以h1 里的每个点的值是0.1。ok,当划分后,有三个点划分错了,根据算法误差表达式
得到 误差为分错了的三个点的值之和,所以ɛ1=(0.1+0.1+0.1)=0.3,而ɑ1 根据表达式
的可以算出来为0.42. 然后就根据算法 把分错的点权值变大。如此迭代,最终完成adaboost算法。
第二步:

根据分类的正确率,得到一个新的样本分布D3,一个子分类器h2
第三步:

得到一个子分类器h3
整合所有子分类器:

因此可以得到整合的结果,从结果中看,及时简单的分类器,组合起来也能获得很好的分类效果,在例子中所有的。
五 Adaboost 疑惑和思考
到这里,也许你已经对adaboost算法有了大致的理解。但是也许你会有个问题,为什么每次迭代都要把分错的点的权值变大呢?这样有什么好处呢?不这样不行吗? 这就是我当时的想法,为什么呢?我看了好几篇介绍adaboost 的博客,都没有解答我的疑惑,也许大牛认为太简单了,不值一提,或者他们并没有意识到这个问题而一笔带过了。然后我仔细一想,也许提高错误点可以让后面的分类器权值更高。然后看了adaboost算法,和我最初的想法很接近,但不全是。 注意到算法最后的表到式为
,这里面的a 表示的权值,是由
得到的。而a是关于误差的表达式,到这里就可以得到比较清晰的答案了,所有的一切都指向了误差。提高错误点的权值,当下一次分类器再次分错了这些点之后,会提高整体的错误率,这样就导致 a 变的很小,最终导致这个分类器在整个混合分类器的权值变低。也就是说,这个算法让优秀的分类器占整体的权值更高,而挫的分类器权值更低。这个就很符合常理了。到此,我认为对adaboost已经有了一个透彻的理解了。
六 总结
最后,我们可以总结下adaboost算法的一些实际可以使用的场景:
1)用于二分类或多分类的应用场景
2)用于做分类任务的baseline
无脑化,简单,不会overfitting,不用调分类器
3)用于特征选择(feature selection)
4)Boosting框架用于对badcase的修正
只需要增加新的分类器,不需要变动原有分类器
由于adaboost算法是一种实现简单,应用也很简单的算法。Adaboost算法通过组合弱分类器而得到强分类器,同时具有分类错误率上界随着训练增加而稳定下降,不会过拟合等的性质,应该说是一种很适合于在各种分类场景下应用的算法。
浅谈 Adaboost 算法的更多相关文章
- 浅谈分词算法(5)基于字的分词方法(bi-LSTM)
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...
- 浅谈分词算法(4)基于字的分词方法(CRF)
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 ...
- 浅谈分词算法(3)基于字的分词方法(HMM)
目录 前言 目录 隐马尔可夫模型(Hidden Markov Model,HMM) HMM分词 两个假设 Viterbi算法 代码实现 实现效果 完整代码 参考文献 前言 在浅谈分词算法(1)分词中的 ...
- 浅谈分词算法基于字的分词方法(HMM)
前言 在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法.在(1)中,我们也讨论了 ...
- 浅谈Manacher算法与扩展KMP之间的联系
首先,在谈到Manacher算法之前,我们先来看一个小问题:给定一个字符串S,求该字符串的最长回文子串的长度.对于该问题的求解.网上解法颇多.时间复杂度也不尽同样,这里列述几种常见的解法. 解法一 ...
- 浅谈Tarjan算法
从这里开始 预备知识 两个数组 Tarjan 算法的应用 求割点和割边 求点-双连通分量 求边-双连通分量 求强连通分量 预备知识 设无向图$G_{0} = (V_{0}, E_{0})$,其中$V_ ...
- 浅谈KMP算法及其next[]数组
KMP算法是众多优秀的模式串匹配算法中较早诞生的一个,也是相对最为人所知的一个. 算法实现简单,运行效率高,时间复杂度为O(n+m)(n和m分别为目标串和模式串的长度) 当字符串长度和字符集大小的比值 ...
- 浅谈时间复杂度- 算法衡量标准Big O
写在前面: 今天有一场考试,考到了Big-O的知识点,考到了一道原题,原题的答案我记住了,但实际题目有一些改动导致答案有所改动,为此作者决定重新整理一下复杂度相关知识点 Efficiency and ...
- 浅谈聚类算法(K-means)
聚类算法(K-means)目的是将n个对象根据它们各自属性分成k个不同的簇,使得簇内各个对象的相似度尽可能高,而各簇之间的相似度尽量小. 而如何评测相似度呢,采用的准则函数是误差平方和(因此也叫K-均 ...
随机推荐
- JAVA线程和进程区别
1,JAVA线程和进程区别? (1)简单来讲一个运行的程序就是一个进程,一个进程中可以有多个线程(线程是程序执行的最小单元). (2)线程有四种状态:运行,就绪,挂起,结束 (3)使用多线程的好处 使 ...
- shell脚本调用C语言之字符串切分函数——strtok
今天上午在写一个需求,要求的比较急,要求当天完成,我大致分析了一下,可以采用从shell脚本中插入一连串的日期,通过调用proc生成的可执行文件,将日期传入后台数据库,在数据库中进行计算.需要切分日期 ...
- 微信小程序swiper高度自适应,swiper的子元素高度不固定
小程序 swiper 组件默认高度150px,并且如果子元素过高,swiper不会自适应高度 解决方案一: (总体来说不够完美,适合满屏滑动) 如果不是满屏的状态,用scroll-view IOS滑动 ...
- MikroTik RouterOS 6.x版本开始支持使用img镜像安装(U盘安装的终极解决方法)
从6的rc6版本开始,官方已经提供了img镜像的安装方式,这让很多以前使用U盘安装的弊端一下子解放了,只需要把下载回来的img进入到PE,然后还原即可. 还原方法有很多:比如physdiskwrite ...
- nginx File not found 错误(转)
当我没初始配在lnmp的时候,用浏览器打开查看php能否解析网页的时出现File not found 不用惊奇让我我们分析一下 使用php-fpm解析PHP,"No input file s ...
- C#——性能计数器
简要Windows性能监视器: 打开Windows性能监视器的步骤如下: 开始→运行→perfmon→确定 在这里我们可以选择添加我们要监控的计数器,比如:cpu使用率.内存使用量等,作为asp.ne ...
- oracle直接读写ms sqlserver数据库(二)配置透明网关
环境说明: 数据库版本:11gR2 透明网关版本:11g 操作系统Windows Server2008_64位 ORACLE_HOME目录:D:\app\Administrator\product\1 ...
- PHPWord 打印 快递单/合同
打印快递单有个特点: 被打印纸的背景是固定的, 你只能 在合适的位置输入快递单的内容,操作步骤如下: 1.制作 word 模板 参考文章 “图解如何用打印机套打快递单” 2.在 模板 中放置“占位符” ...
- C#编程(六十四)----------并行扩展
并行的扩展 扩展1. Parallel的使用: 在Parallel下面有三个常用的方法Invoke,For,ForEach Parallel.Invoke()方法是最简单,最简洁的将串行的代码并行化. ...
- 通过连接池和字段索引,提升单点登录cas的性能
cas是多个系统的中心认证,认证的过程就是用户的登录信息和数据库中的信息匹对的过程,假设某一时刻登录的人数非常多,须要频繁的读取数据库,数据库连接的管理就是问题. 前天測试评教时无意之中把单点登录的问 ...