TensorRT IRNNv2Layer

IRNNv2Layer层实现递归层,如递归神经网络(RNN)、门控递归单元(GRU)和长短期记忆(LSTM)。支持的类型有RNN、GRU和LSTM。它执行一个递归操作,其中操作由几个著名的递归神经网络(RNN)“单元”之一定义。

图层说明

该层接受输入序列X,初始隐藏状态H0,如果该单元是长短期存储器(LSTM)单元,则为初始单元状态C0,并产生一个输出Y,该输出Y表示跨T个时间步计算的最终RNN“子层”的输出(见下文)。可选地,该层还可以产生表示最终隐藏状态的输出hT,并且,如果单元是LSTM单元,则输出cT表示最终单元状态。

将单元的操作定义为函数G(x,h,c)。此函数接受向量输入x、h和c,并产生最多两个向量输出h'和c',表示执行单元操作后的隐藏状态和单元状态。

在默认(单向)配置中,RNNv2层应用如下图所示的Gas:

another layer are dropped.

network->markOutput(*pred->getOutput(1));

pred->getOutput(1)->setType(DataType::kINT32);

rnn->getOutput(1)->setName(HIDDEN_OUT_BLOB_NAME);

network->markOutput(*rnn->getOutput(1));

if (rnn->getOperation() == RNNOperation::kLSTM)

{

rnn->getOutput(2)->setName(CELL_OUT_BLOB_NAME);

network->markOutput(*rnn->getOutput(2));

};

See the C++ class IRNNv2Layer or the Python class IRNNv2Layer for further details.

  1. RNNv2 Layer Setup

网络的第一层是RNN层。这是在addRNNv2Layer()函数中添加和配置的。该层由以下配置参数组成。

操作

这定义了RNN单元的操作。支持的操作目前有relu、LSTM、GRU和tanh。

方向

这定义了RNN是单向的还是双向的(BiRNN)。

输入模式

这定义了RNN的第一层是执行矩阵乘法(线性模式),还是跳过矩阵乘法(跳过模式)。

例如,在sampleCharRNN中使用的网络中,我们使用了一个线性的、单向的LSTM单元,其中包含层数为层数的层数。下面的代码显示了如何创建这个RNNv2层。

auto rnn = network->addRNNv2(*data, LAYER_COUNT, HIDDEN_SIZE, SEQ_SIZE, RNNOperation::kLSTM);

注:对于RNNv2层,需要单独设置权重和偏差。有关详细信息,请参见RNNv2层-可选输入。

有关更多信息,请参阅TensorRT API文档。

  1. RNNv2 Layer - Optional Inputs

如果存在需要将hidden和cell状态预初始化为非零值的情况,那么可以通过setHiddenState和setCellState调用对它们进行预初始化。这些是RNN的可选输入。

C++ code snippet

rnn->setHiddenState(*hiddenIn);

if (rnn->getOperation() == RNNOperation::kLSTM)

rnn->setCellState(*cellIn);

Python code snippet

rnn.hidden_state = hidden_in

if rnn.op == trt.RNNOperation.LSTM:

rnn.cell_state = cell_in

TensorRT IRNNv2Layer的更多相关文章

  1. TensorRT学习总结

    TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而 ...

  2. TensorRT&Sample&Python[yolov3_onnx]

    本文是基于TensorRT 5.0.2基础上,关于其内部的yolov3_onnx例子的分析和介绍. 本例子展示一个完整的ONNX的pipline,在tensorrt 5.0的ONNX-TensorRT ...

  3. TensorRT&Sample&Python[uff_custom_plugin]

    本文是基于TensorRT 5.0.2基础上,关于其内部的uff_custom_plugin例子的分析和介绍. 本例子展示如何使用cpp基于tensorrt python绑定和UFF解析器进行编写pl ...

  4. TensorRT&Sample&Python[fc_plugin_caffe_mnist]

    本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍. 本例子相较于前面例子的不同在于,其还包含cpp代码,且此时依赖项还挺多.该例子展 ...

  5. TensorRT&Sample&Python[network_api_pytorch_mnist]

    本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍. 本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未 ...

  6. TensorRT&Sample&Python[end_to_end_tensorflow_mnist]

    本文是基于TensorRT 5.0.2基础上,关于其内部的end_to_end_tensorflow_mnist例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...

  7. TensorRT&Sample&Python[introductory_parser_samples]

    本文是基于TensorRT 5.0.2基础上,关于其内部的introductory_parser_samples例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...

  8. 模型加速[tensorflow&tensorrt]

    在tensorflow1.8之后的版本中,tensorflow.contrib部分都有tensorrt的组件,该组件存在的意义在于,你可以读取pb文件,并调用tensorrt的方法进行subgraph ...

  9. TensorRT层和每个层支持的精度模式

    下表列出了TensorRT层和每个层支持的精确模式.它还列出了该层在深度学习加速器(DLA)上运行的能力.有关附加约束的更多信息,请参见 DLA Supported Layershttps://doc ...

随机推荐

  1. hdu1960 最小路径覆盖

    题意:       给你明天的出租车订单,订单中包含每个人的起点和终点坐标,还有时间,如果一辆出租车想接一个乘客必须在每个订单前1分钟到达,也就是小于等于time-1,问你完成所有订单要最少多少量出租 ...

  2. hdu3018 一笔画问题

    题意:       给你一幅画,这幅画由点和边构成,问你最少几笔能把这幅画画完. 思路:      这个题目的结论比较巧妙,首先我们考虑下,如果给的图是欧拉图,或者是条欧拉回路,那么我们一笔就搞定了, ...

  3. Bettercap2.X版本的使用

    目录 Bettercap 安装 ARP欺骗 DNS 欺骗 注入脚本 结合Beef-XSS 替换下载文件 Bettercap 很多人应该都听过或者用过Ettercap,这是Kali下一款优秀的ARP欺骗 ...

  4. markdown 实现代码折叠效果

    展开:我是一个挑山工,仙人跳 #include int main() { printf("挑山工,快乐加倍"); } 展开:我是一个挑山工,仙人跳 #include int mai ...

  5. 【报错】No converter found for return value of type: class java.util.HashMap

    ssm开发碰到的错误 @ResponseBody的作用是是将java对象转为json格式的数据 @ResponseBody注解标识该方法的返回值直接写回到HTTP响应体中去(而不会被被放置到Model ...

  6. HashMap 的数据结构

    目录 content append content HashMap 的数据结构: 数组 + 链表(Java7 之前包括 Java7) 数组 + 链表 + 红黑树(从 Java8 开始) PS:这里的& ...

  7. linux命令的使用 以及基本docker命令及docker镜像安装

    以linux CentOS-7 64位 系统为例 查看ip  ifconfig 固定ip 输入vim /etc/sysconfig/network-scripts/ifcfg-ens3 其中vim是修 ...

  8. C#可空类型及其衍生运算符

    这节讲一下C#可空类型(Nullable) 我们知道,值类型在使用前必须设置值,而引用类型则可以是null,但在某些情况下,为值类型设置为空是必要的(如处理数据库数据的时候),微软因此推出了可空类型  ...

  9. JAVA并发(2)-ReentrantLock的见解

    上节,我们讲了AQS的阻塞与释放实现原理,线程间通信(Condition)的原理.这次,我们就讲讲基于AQS实现的ReentrantLock(重入锁). 1. 介绍 结合上面的ReentrantLoc ...

  10. Flink使用二次聚合实现TopN计算-乱序数据

    一.背景说明: 在上篇文章实现了TopN计算,但是碰到迟到数据则会无法在当前窗口计算,需要对其中的键控状态优化 Flink使用二次聚合实现TopN计算 本次需求是对数据进行统计,要求每隔5秒,输出最近 ...