lmn u 表示 u 所在splay子树最上方点距离最近的白点

rmn u 表示 u 所在splay子树最下方点距离最近的白点

开一个set维护所有虚儿子能走到的最近的白点的距离

考虑pushup,

对于它的右儿子,考虑要么从这个点走向它的虚儿子,要么通过它左子树中深度最大的点走。

对于它的左儿子要么从这个点走向它的虚儿子,要么通过它右子树的最浅点走。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<set>
using namespace std;
#define MAXN 100006
int n , m;
int ch[MAXN][2] , siz[MAXN] , fa[MAXN] , lmn[MAXN] , rmn[MAXN];
int w[MAXN];
multiset<int> S[MAXN]; bool notr( int u ) {
return ( ch[fa[u]][0] == u ) || ( ch[fa[u]][1] == u );
}
void pushup( int u ) {
int ls = ch[u][0] , rs = ch[u][1];
siz[u] = siz[ls] + siz[rs] + 1;
if( w[u] ) {
lmn[u] = min( lmn[ls] , siz[ls] );
rmn[u] = min( rmn[rs] , siz[rs] );
return;
}
int t = S[u].empty() ? 0x3f3f3f3f : *S[u].begin();
lmn[u] = min( lmn[ls] , lmn[rs] + siz[ls] + 1 );
rmn[u] = min( rmn[rs] , rmn[ls] + siz[rs] + 1 );
lmn[u] = min( lmn[u] , t + siz[ls] ) , rmn[u] = min( rmn[u] , t + siz[rs] );
}
void rotate( int x ) {
int f = fa[x] , g = fa[f] , w = ch[fa[x]][1] == x;
int wf = ch[g][1]==f , k = ch[x][w^1];
if( notr(f) ) ch[g][wf] = x; ch[f][w] = k , ch[x][w^1] = f;
fa[f] = x , fa[k] = f , fa[x] = g;
pushup( f ) , pushup( x );
}
void splay( int x ) {
int f , g;
while( notr( x ) ) {
f = fa[x] , g = fa[f];
if( notr( f ) )
rotate( (ch[f][0]==x)^(ch[g][0]==f) ? x : f );
rotate( x );
}
}
void access( int x ) {
for( int p = 0 ; x ; ( p = x , x = fa[x] ) ) {
splay( x );
if( ch[x][1] ) S[x].insert( 1 + lmn[ch[x][1]] );
if( p ) S[x].erase( S[x].find( 1 + lmn[p] ) );
ch[x][1] = p , pushup( x );
}
} int head[MAXN] , nex[MAXN << 1] , to[MAXN << 1] , ecn;
void ade( int u , int v ) {
nex[++ ecn] = head[u] , to[ecn] = v , head[u] = ecn;
}
void dfs( int u , int f ) {
fa[u] = f;
for( int i = head[u] ; i ; i = nex[i] ) {
int v = to[i];
if( v == f ) continue;
dfs( v , u );
S[u].insert( 1 + 0x3f3f3f3f );
} } int main() {
cin >> n;
for( int i = 1 , u , v ; i < n ; ++ i ) {
scanf("%d%d",&u,&v);
ade( u , v ) , ade( v , u );
}
dfs( 1 , 0 );
lmn[0] = rmn[0] = 0x3f3f3f3f;
for( int i = 1 ; i <= n ; ++ i )
lmn[i] = rmn[i] = 0x3f3f3f3f , siz[i] = 1;
cin >> m;
int opt , u;
while( m-- ) {
scanf("%d%d",&opt,&u);
// cout << S[1].size() << endl;
if( opt == 0 ) {
access( u ) , splay( u );
w[u] ^= 1;
pushup( u );
} else {
access( u ) , splay( u );
printf("%d\n",rmn[u] > n ? -1 : rmn[u]);
}
}
}

Qtree V的更多相关文章

  1. 模版 动态 dp

    模版 动态 dp 终于来写这个东西了.. LG 模版:给定 n 个点的数,点有点权, $ m $ 次修改点权,求修改完后这个树的最大独立集大小. 我们先来考虑朴素的最大独立集的 dp \[dp[u][ ...

  2. SPOJ QTREE Query on a tree V

    You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are number ...

  3. SPOJ QTREE Query on a tree V ——动态点分治

    [题目分析] QTREE4的弱化版本 建立出分治树,每个节点的堆表示到改点的最近白点距离. 然后分治树上一直向上,取min即可. 正确性显然,不用担心出现在同一子树的情况(不会是最优解),请自行脑补. ...

  4. 激!QTREE系列

    我现在才开始刷 QTREE 是不是太弱了?算了不管他…… QTREE: 树链剖分裸题(据说 lct 会超时……该说是真不愧有 spoj 的气息吗?) #include <cstdio> # ...

  5. Cogs 1672. [SPOJ375 QTREE]难存的情缘 LCT,树链剖分,填坑计划

    题目:http://cojs.tk/cogs/problem/problem.php?pid=1672 1672. [SPOJ375 QTREE]难存的情缘 ★★★☆   输入文件:qtree.in  ...

  6. SPOJ QTREE 系列解题报告

    题目一 : SPOJ 375 Query On a Tree http://www.spoj.com/problems/QTREE/ 给一个树,求a,b路径上最大边权,或者修改a,b边权为t. #in ...

  7. QTREE - Query on a tree

    QTREE - Query on a tree 题目链接:http://www.spoj.com/problems/QTREE/ 参考博客:http://blog.sina.com.cn/s/blog ...

  8. 树链剖分-SPOJ375(QTREE)

    QTREE - Query on a tree You are given a tree (an acyclic undirected connected graph) with N nodes, a ...

  9. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

随机推荐

  1. linux与windows下文件编码问题

    注:转换操作均在Linux终端进行操作 DOS与Unix格式转换 安装工具:dos2unix.unix2dos # ubuntu apt-get install dos2unix apt-get in ...

  2. redis5集群搭建步骤

    通常情况下为了redis的高可用,我们一般不会使用redis的单实例去运行,一般都会搭建一个 redis 的集群去运行.此处记录一下 redis5 以后 cluster 集群的搭建. 一.需求 red ...

  3. PWM通过RC低通滤波器模拟DAC

    当我们电路需要DAC而单片机并没有DAC外设时,则可采用PWM通过RC低通滤波器来模拟实现DAC功能. RC低通滤波器 当采用低通滤波器模拟DAC时,PWM频率应远大于RC低通滤波电路的截止频率fc= ...

  4. T-SQL——函数——时间操作函数

    目录 0. 日期和时间类型 0.0 时间类型 1. 转换函数 1.1 CAST 1.2 CONVERT 2. 日期操作函数 2.0 GETDATE和GETUTCDATE 2.1 SYSDATETIME ...

  5. DC综合与Tcl语法结构概述

    转载:https://www.cnblogs.com/IClearner/p/6617207.html 1.逻辑综合的概述 synthesis = translation + logic optimi ...

  6. TypeError: Error when calling the metaclass bases Cannot create a consistent method resolution

    Python Error when calling the metaclass bases Cannot create a consistent method resolution order (MR ...

  7. Kioskcached(1)之 Memcached & Redis & Kioskcached 性能测试对比

    前言:本文仅仅是作者自己在学习过程中的一次实验而已,或许因为各种因素会导致实验结果与你之前的认知不太一样,因此请你带着批判的眼光看待本文(本文不具有实际环境的参考性). 一:测试目的 在了解了一些No ...

  8. 【.NET 与树莓派】用 MPD 制作数字音乐播放器

    树莓派的日常家居玩法多多,制作一台属于自己的数字音乐播放机是其中的一种.严格上说,树莓派是没有声卡的,其板载的 3.5 mm 音频孔实际是通过 PWM 来实现音频输出的(通过算法让PWM信号变成模拟信 ...

  9. python与C结构体之间二进制数据转换

    python与C结构体之间数据转换 前言 在实际应用中,可能会遇到直接和C进行二进制字节流协议通信,这时要把数据解包成python数据,如果可能,最好与C定义的结构体完全对应上. python中有2种 ...

  10. centos7.2安装rabbitmq教程

    环境: centos7.2 rabbitmq依赖erlang,需要先安装erlang 1 安装erlang rpm -Uvh https://download.fedoraproject.org/pu ...