Codeforces 193E - Fibonacci Number(打表找规律+乱搞)
蠢蠢的我竟然第一眼想套通项公式?然鹅显然 \(5\) 在 \(\bmod 10^{13}\) 意义下并没有二次剩余……我真是活回去了。。。
考虑打表找规律(u1s1 这是一个非常有用的技巧,因为这个 \(10^{13}\) 给的就很灵性,用到类似的技巧的题目还有这个,通过对这些模数的循环节打表找出它们的共同性质,所以以后看到什么特殊的数据或者数据范围特别大但读入量 \(\mathcal O(1)\) 的题(比如 CF838D)可以考虑小数据打几个表看看有没有什么共同特征,说不定对解题有些用处),斐波那契数列在模 \(10,100,1000,10000,100000,\cdots\) 意义下的循环节恰好是 \(60,300,1500,15000,150000\),后面依次乘 \(10\)。
因此我们考虑这样一个算法,我们考虑枚举 \(f_1,f_2,\cdots,f_{1.5\times 10^6}\),即 Fibonacci 数列在模 \(10^6\) 下的循环节并求出满足 \(f_i\equiv n\pmod{10^6}\) 的 \(i\) 组成的集合 \(S\),然后一步步将模数乘 \(10\) 并生成新的集合 \(S\),具体来说,由于每 \(1.5\times 10^6\) 项斐波那契数列恰好构成一个循环节,因此斐波那契数列模 \(10^7\) 的一个循环节恰好由 \(10\) 个模 \(10^6\) 的循环节组成,因此在一个模 \(10^7\) 的循环节中,所有 \(f_i\) 与 \(n\) 模 \(10^6\) 同余的 \(i\) 一定可以写成 \(kT+x\) 的形式,其中 \(k=0,1,2,\cdots,9,T=1.5\times 10^6,x\in S\),我们只需检验是否 \(f_{kT+x}\equiv n\pmod{10^7}\) 即可求出 \(f_i\equiv n\pmod{10^7}\) 的 \(i\) 组成的集合 \(S\),也就完成了由 \(10^6\to 10^7\) 的转化,如此一直推到 \(10^{13}\) 即可。
时间复杂度 \(\mathcal O(\text{能过})\)
const int T=1.5e6;
const ll MOD=1e13;
const int SMOD=1e6;
const ll INF=1e18;
ll n;
ll smul(ll x,ll y){
ll ret=0;
for(;y;y>>=1,(x<<=1)%=MOD) if(y&1) (ret+=x)%=MOD;
return ret;
}
struct mat{
ll a[2][2];
mat(){memset(a,0,sizeof(a));}
mat operator *(const mat &rhs){
mat ret;
for(int i=0;i<2;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++)
ret.a[i][j]+=smul(a[i][k],rhs.a[k][j]);
for(int i=0;i<2;i++) for(int j=0;j<2;j++) ret.a[i][j]%=MOD;
return ret;
}
};
ll getf(ll ps){
mat bs;bs.a[0][1]=bs.a[1][0]=bs.a[1][1]=1;
mat rs;rs.a[0][0]=rs.a[1][1]=1;
for(;ps;ps>>=1,bs=bs*bs) if(ps&1) rs=rs*bs;
return rs.a[1][0];
}
vector<ll> can,tmp;
int main(){
scanf("%lld",&n);
for(ll i=1,p=0,q=1;i<=T;i++){
if(q%SMOD==n%SMOD) can.pb(i);
p=(p+q)%MOD;p^=q^=p^=q;
} ll CT=T,CMOD=SMOD;
while(CMOD^MOD){
tmp.clear();CMOD*=10;
for(ll x:can) for(int i=0;i<=9;i++)
if(getf(CT*i+x)%CMOD==n%CMOD) tmp.pb(CT*i+x);
swap(tmp,can);CT*=10;
} ll res=INF;for(ll x:can) chkmin(res,x);
printf("%lld\n",(res==INF)?-1:res);
return 0;
}
Codeforces 193E - Fibonacci Number(打表找规律+乱搞)的更多相关文章
- codeforces Gym 100418D BOPC 打表找规律,求逆元
BOPCTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- ZOJ 3622 Magic Number 打表找规律
A - Magic Number Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Subm ...
- [CQOI2014]数三角形 题解(找规律乱搞)
题面 其实这道题不用组合数!不用容斥! 只需要一个gcd和无脑找规律(滑稽 乍一看题目,如果单纯求合法三角形的话情况太多太复杂,我们可以从局部入手,最终扩展到整体. 首先考虑这样的情况: 类似地,我们 ...
- CodeForces - 1110C-Meaningless Operation(打表找规律)
Can the greatest common divisor and bitwise operations have anything in common? It is time to answer ...
- Tetrahedron(Codeforces Round #113 (Div. 2) + 打表找规律 + dp计数)
题目链接: https://codeforces.com/contest/166/problem/E 题目: 题意: 给你一个三菱锥,初始时你在D点,然后你每次可以往相邻的顶点移动,问你第n步回到D点 ...
- Codeforces Round #493 (Div. 2)D. Roman Digits 第一道打表找规律题目
D. Roman Digits time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- HDU 1021 Fibonacci Again【打表找规律】
Fibonacci Again Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- codeforces#1090 D. New Year and the Permutation Concatenation(打表找规律)
题意:给出一个n,生成n的所有全排列,将他们按顺序前后拼接在一起组成一个新的序列,问有多少个长度为n的连续的子序列和为(n+1)*n/2 题解:由于只有一个输入,第一感觉就是打表找规律,虽然表打出来了 ...
- Codeforces Beta Round #24 D. Broken robot (打表找规律)
题目链接: 点击我打开链接 题目大意: 给你 \(n,j\),再给出 \(m[0]\) 的坐标和\(a[0]-a[n-1]\) 的坐标. 让你输出 \(m[j]\) 的坐标,其中 \(m[i]\) 和 ...
随机推荐
- 2021.10.7考试总结[NOIP模拟71]
信心赛,但炸了.T3SB错直接炸飞,T4可以硬算的组合数非要分段打表求阶乘..T2也因为一个细节浪费了大量时间.. 会做难题很好,但首先还是要先把能拿的分都拿到. T1 签到题 结论:总可以做到对每个 ...
- 2021.1.8 NKOJ 周赛总结
意料之中..... A:nkoj 3900 AC小程序 http://oi.nks.edu.cn/zh/Problem/Details/3900 A题比较简单,单独分析一下A和C,其实就是一个斐波那契 ...
- hdu 3199 Hamming Problem(构造?枚举?)
题意: For each three prime numbers p1, p2 and p3, let's define Hamming sequence Hi(p1, p2, p3), i=1, . ...
- 『学了就忘』Linux基础 — 17、远程服务器关机及重启时的注意事项
目录 1.为什么远程服务器不能关机 2.远程服务器重启时需要注意两点 3.不要在服务器访问高峰运行高负载命令 4.远程配置防火墙时不要把自己踢出服务器 5.指定合理的密码规范并定期更新 6.合理分配权 ...
- es6实现继承详解
ES6中通过class关键字,定义类 class Parent { constructor(name,age){ this.name = name; this.age = age; } speakSo ...
- gitbook热更新时报错operation not permitted
在使用gitbook写东西的时候,当文档内容有更新的时候,会自动更新内容到页面上,方便预览.但是,存在一个bug,就是会神奇的崩溃掉,出现如下的错误提示: Restart after change i ...
- 『学了就忘』Linux基础命令 — 26、帮助命令
目录 1.man命令 (1)man命令的快捷键 (2)man命令的帮助级别(了解即可) (3)man命令的使用 2.info命令 3.help命令 4.--help选项 1.man命令 man是最常见 ...
- k8s入坑之路(9)k8s网络插件详解
Flannel: 最成熟.最简单的选择 Calico: 性能好.灵活性最强,目前的企业级主流 Canal: 将Flannel提供的网络层与Calico的网络策略功能集成在一起. Weave: 独有的功 ...
- Redis Stream类型的使用
一.背景 最近在看redis这方面的知识,发现在redis5中产生了一种新的数据类型Stream,它和kafka的设计有些类似,可以当作一个简单的消息队列来使用. 二.redis中Stream类型的特 ...
- JMeter 5.4 打开测试计划 报错:Unexpected error
保存测试计划名为: 新增用户.jmx 关闭 JMeter 再次打开JMeter : 双击 jmeter.bat JMeter 启动 打开 新增用户.jmx Unexpected error. 看上图 ...