Tiling Terrace CodeForces - 1252J(dp、贪心)
Tiling Terrace
\]
题意
给出一个字符串 \(s\),每次可以选择三种类型来获得价值
\(Type1:“.”\) 获得 \(w_1\) 元
\(Type2:“..”\) 获得 \(w_2\) 元
\(Type3:“.\#.”\) 获得 \(w_3\) 元
此外,还有两个限制条件
\(Limti1:Type1\) 至多只能选 \(K\) 个
\(Limit2:\) 每个字符只能被选择一次
问最多可以获得的价值。
思路
首先可以发现,对于两个相邻的 \(\#\),如果我们确定了这两个的状态,也就是不用或者当成 \(Type3\) 来用,那么我们就可以知道这两个 \(\#\) 之间可用 \(.\) 的数量。如果这个数量是奇数,那么意味着其中有一个 \(.\) 拿来用作 \(Type1\) 是必然不会亏的,也就是这个 \(.\) 是白嫖的。
令 \(dp[i][j][k][0/1]\) 表示到第 \(i\) 个 \(\#\) 号为止,白嫖了 \(j\) 个 \(Type1\),选了 \(k\) 个 \(Type3\),并且第 \(i\) 个 \(\#\) 是否当成 \(Type3\) 来用。
为了方便计算,我们可以在整个字符串的开头加入一个 \(\#\),整个字符串的结尾加入一个 \(\#\),那么整个的状态必然要从 \(dp[0][0][0][0]\) 开始递推,必然以 \(dp[\#_{number}][j][k][0]\) 结尾。
这样推出来以后,我们就知道了白嫖 \(a\) 个 \(Type1\),选 \(c\) 个 \(Type3\) 的情况下,最多可以获得多少个 \(b\)。最后对 \(a、b、c\) 贪心求答案,尝试在 \(Type1\) 不超过 \(K\) 的情况下把 \(Type2\) 换成 \(Type1\)。
我们可以发现,由于 \(\#\) 的个数最多就 \(50\) 个,那么白嫖的 \(Type1\) 必然不会超过 \(51\),所以整个 \(dp\) 的复杂度是 \(O\left(50^3\times4\right)\) 的
/***************************************************************
> File Name : J.cpp
> Author : Jiaaaaaaaqi
> Created Time : Tue 05 Nov 2019 10:00:31 PM CST
***************************************************************/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
ll g1, g2, g3;
char s[maxn];
ll dp[60][60][60][2];
vector<int> vv;
ll calc(ll a, ll b, ll c) {
if(a > m) a = m;
ll ans = a*g1 + c*g3;
ll tmp = min(b, (m-a)/2);
ll res = max(b*g2, (b-tmp)*g2 + tmp*2ll*g1);
if(a+tmp*2<m && b-tmp>0) res = max(res, res-g2+g1);
return ans+res;
}
int main() {
// freopen("in", "r", stdin);
scanf("%d%d%lld%lld%lld", &n, &m, &g1, &g2, &g3);
scanf("%s", s+1);
vv.clear();
vv.pb(0);
for(int i=1; i<=n; i++) {
if(s[i]=='#') vv.pb(i);
}
vv.pb(n+1);
for(int i=0; i<60; i++) for(int j=0; j<60; j++)
for(int k=0; k<60; k++) for(int z=0; z<2; z++)
dp[i][j][k][z] = -INF;
dp[0][0][0][0] = 0;
int sz = vv.size()-1;
for(int i=0; i<sz; i++) {
int s = vv[i+1]-vv[i]-1;
for(int j=0; j<60; j++) {
for(int k=0; k<60; k++) {
if(dp[i][j][k][0] >= 0) {
if(s>=0) dp[i+1][j+s%2][k][0] = max(dp[i+1][j+s%2][k][0], dp[i][j][k][0] + s/2);
if(s>=1) dp[i+1][j+(s-1)%2][k][1] = max(dp[i+1][j+(s-1)%2][k][1], dp[i][j][k][0] + (s-1)/2);
}
if(dp[i][j][k][1] >= 0) {
if(s>=1) dp[i+1][j+(s-1)%2][k+1][0] = max(dp[i+1][j+(s-1)%2][k+1][0], dp[i][j][k][1] + (s-1)/2);
if(s>=2) dp[i+1][j+(s-2)%2][k+1][1] = max(dp[i+1][j+(s-2)%2][k+1][1], dp[i][j][k][1] + (s-2)/2);
}
}
}
}
ll ans = 0;
for(int i=0; i<60; i++) for(int j=0; j<60; j++) if(dp[sz][i][j][0]>=0)
ans = max(ans, calc(i, dp[sz][i][j][0], j));
printf("%lld\n", ans);
return 0;
}
Tiling Terrace CodeForces - 1252J(dp、贪心)的更多相关文章
- CF1252J Tiling Terrace
CF1252J Tiling Terrace 洛谷评测传送门 题目描述 Talia has just bought an abandoned house in the outskirt of Jaka ...
- 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心
题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...
- CodeForces - 158B.Taxi (贪心)
CodeForces - 158B.Taxi (贪心) 题意分析 首先对1234的个数分别统计,4人组的直接加上即可.然后让1和3成对处理,只有2种情况,第一种是1多,就让剩下的1和2组队处理,另外一 ...
- BZOJ 2021 [Usaco2010 Jan]Cheese Towers:dp + 贪心
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2021 题意: John要建一个奶酪塔,高度最大为m. 他有n种奶酪.第i种高度为h[i]( ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- 线段树+dp+贪心 Codeforces Round #353 (Div. 2) E
http://codeforces.com/contest/675/problem/E 题目大意:有n个车站,每个车站只能买一张票,这张票能从i+1到a[i].定义p[i][j]为从i到j所需要买的最 ...
- Codeforces #550 (Div3) - G.Two Merged Sequences(dp / 贪心)
Problem Codeforces #550 (Div3) - G.Two Merged Sequences Time Limit: 2000 mSec Problem Description T ...
- Codeforces Round #353 (Div. 2) E. Trains and Statistic dp 贪心
E. Trains and Statistic 题目连接: http://www.codeforces.com/contest/675/problem/E Description Vasya comm ...
- CodeForces - 940E - Cashback +贪心+DP
传送门:CodeForces - 940E - Cashback 题意:在一个长度为n的数组中,可以分出长度为 k 连续的多个数组b(每个数组 b 的 k 可不相同),然后,可以对每个数组 b 进行删 ...
随机推荐
- phpize安装PHP扩展
安装编译完成php源码后忘记安装一些扩展可以通过phpize来安装 拿lnmp1.6安装举例 安装完成lnmp后发现有些扩展没有 lnmp1.6的安装脚本会在lnmp1.6里生成src,里面是lnmp ...
- 怎样用 C# 快速比较 2 个文件是否是相同的文件?
方案1: 直接贴代码了: using System; using System.Collections.Generic; using System.IO; using System.Linq; usi ...
- Gitlab 部署汉化及邮件配置
Gitlab 简介 Gitlab 是一个基于git私有代码管理的服务集成. Nginx:静态web服务器. gitlab-shell:用于处理Git命令和修改authorized keys列表. gi ...
- JVM的监控工具之jinfo
参考博客:https://www.jianshu.com/p/8d8aef212b25 jinfo(ConfigurationInfoforJava)的作用是实时地查看和调整虚拟机各项参数,使用jps ...
- ocelot性能测试
网上搜索发现多篇文章指出ocelot的性能有问题,可是在ocelot项目issue提问中,维护者指出,ocelot的性能问题不大.瓶颈在于.net的httpclient. 我参考文章 https:// ...
- 【Python】itertools之product函数
[转载]源博客 product 用于求多个可迭代对象的笛卡尔积(Cartesian Product),它跟嵌套的 for 循环等价.即: product(A, B) 和 ((x,y) for x in ...
- 【C#夯实】我与接口二三事:IEnumerable、IQueryable 与 LINQ
序 学生时期,有过小组作业,当时分工一人做那么两三个页面,然而在前端差不多的时候,我和另一个同学发生了争执.当时用的是简单的三层架构(DLL.BLL.UI),我个人觉得各写各的吧,到时候合并,而他觉得 ...
- django跳转页面传参
1.如果在反转url的时候,需要添加参数,那么可以通过传递'kwargs'参数到'reverse'函数中.实例代码: urls.py from django.urls import path, re_ ...
- vue Router——进阶篇
vue Router--基础篇 1.导航守卫 正如其名,vue-router 提供的导航守卫主要用来通过跳转或取消的方式守卫导航.有多种机会植入路由导航过程中:全局的, 单个路由独享的, 或者组件级的 ...
- Android中设置状态栏颜色和字体颜色
1.在这里设置的状态栏背景为白色,字体为暗色 创建一个方法进行设置: protected void setStatusBar() { if (Build.VERSION.SDK_INT >= B ...