Tiling Terrace CodeForces - 1252J(dp、贪心)
Tiling Terrace
\]
题意
给出一个字符串 \(s\),每次可以选择三种类型来获得价值
\(Type1:“.”\) 获得 \(w_1\) 元
\(Type2:“..”\) 获得 \(w_2\) 元
\(Type3:“.\#.”\) 获得 \(w_3\) 元
此外,还有两个限制条件
\(Limti1:Type1\) 至多只能选 \(K\) 个
\(Limit2:\) 每个字符只能被选择一次
问最多可以获得的价值。
思路
首先可以发现,对于两个相邻的 \(\#\),如果我们确定了这两个的状态,也就是不用或者当成 \(Type3\) 来用,那么我们就可以知道这两个 \(\#\) 之间可用 \(.\) 的数量。如果这个数量是奇数,那么意味着其中有一个 \(.\) 拿来用作 \(Type1\) 是必然不会亏的,也就是这个 \(.\) 是白嫖的。
令 \(dp[i][j][k][0/1]\) 表示到第 \(i\) 个 \(\#\) 号为止,白嫖了 \(j\) 个 \(Type1\),选了 \(k\) 个 \(Type3\),并且第 \(i\) 个 \(\#\) 是否当成 \(Type3\) 来用。
为了方便计算,我们可以在整个字符串的开头加入一个 \(\#\),整个字符串的结尾加入一个 \(\#\),那么整个的状态必然要从 \(dp[0][0][0][0]\) 开始递推,必然以 \(dp[\#_{number}][j][k][0]\) 结尾。
这样推出来以后,我们就知道了白嫖 \(a\) 个 \(Type1\),选 \(c\) 个 \(Type3\) 的情况下,最多可以获得多少个 \(b\)。最后对 \(a、b、c\) 贪心求答案,尝试在 \(Type1\) 不超过 \(K\) 的情况下把 \(Type2\) 换成 \(Type1\)。
我们可以发现,由于 \(\#\) 的个数最多就 \(50\) 个,那么白嫖的 \(Type1\) 必然不会超过 \(51\),所以整个 \(dp\) 的复杂度是 \(O\left(50^3\times4\right)\) 的
/***************************************************************
> File Name : J.cpp
> Author : Jiaaaaaaaqi
> Created Time : Tue 05 Nov 2019 10:00:31 PM CST
***************************************************************/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
ll g1, g2, g3;
char s[maxn];
ll dp[60][60][60][2];
vector<int> vv;
ll calc(ll a, ll b, ll c) {
if(a > m) a = m;
ll ans = a*g1 + c*g3;
ll tmp = min(b, (m-a)/2);
ll res = max(b*g2, (b-tmp)*g2 + tmp*2ll*g1);
if(a+tmp*2<m && b-tmp>0) res = max(res, res-g2+g1);
return ans+res;
}
int main() {
// freopen("in", "r", stdin);
scanf("%d%d%lld%lld%lld", &n, &m, &g1, &g2, &g3);
scanf("%s", s+1);
vv.clear();
vv.pb(0);
for(int i=1; i<=n; i++) {
if(s[i]=='#') vv.pb(i);
}
vv.pb(n+1);
for(int i=0; i<60; i++) for(int j=0; j<60; j++)
for(int k=0; k<60; k++) for(int z=0; z<2; z++)
dp[i][j][k][z] = -INF;
dp[0][0][0][0] = 0;
int sz = vv.size()-1;
for(int i=0; i<sz; i++) {
int s = vv[i+1]-vv[i]-1;
for(int j=0; j<60; j++) {
for(int k=0; k<60; k++) {
if(dp[i][j][k][0] >= 0) {
if(s>=0) dp[i+1][j+s%2][k][0] = max(dp[i+1][j+s%2][k][0], dp[i][j][k][0] + s/2);
if(s>=1) dp[i+1][j+(s-1)%2][k][1] = max(dp[i+1][j+(s-1)%2][k][1], dp[i][j][k][0] + (s-1)/2);
}
if(dp[i][j][k][1] >= 0) {
if(s>=1) dp[i+1][j+(s-1)%2][k+1][0] = max(dp[i+1][j+(s-1)%2][k+1][0], dp[i][j][k][1] + (s-1)/2);
if(s>=2) dp[i+1][j+(s-2)%2][k+1][1] = max(dp[i+1][j+(s-2)%2][k+1][1], dp[i][j][k][1] + (s-2)/2);
}
}
}
}
ll ans = 0;
for(int i=0; i<60; i++) for(int j=0; j<60; j++) if(dp[sz][i][j][0]>=0)
ans = max(ans, calc(i, dp[sz][i][j][0], j));
printf("%lld\n", ans);
return 0;
}
Tiling Terrace CodeForces - 1252J(dp、贪心)的更多相关文章
- CF1252J Tiling Terrace
CF1252J Tiling Terrace 洛谷评测传送门 题目描述 Talia has just bought an abandoned house in the outskirt of Jaka ...
- 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心
题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...
- CodeForces - 158B.Taxi (贪心)
CodeForces - 158B.Taxi (贪心) 题意分析 首先对1234的个数分别统计,4人组的直接加上即可.然后让1和3成对处理,只有2种情况,第一种是1多,就让剩下的1和2组队处理,另外一 ...
- BZOJ 2021 [Usaco2010 Jan]Cheese Towers:dp + 贪心
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2021 题意: John要建一个奶酪塔,高度最大为m. 他有n种奶酪.第i种高度为h[i]( ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- 线段树+dp+贪心 Codeforces Round #353 (Div. 2) E
http://codeforces.com/contest/675/problem/E 题目大意:有n个车站,每个车站只能买一张票,这张票能从i+1到a[i].定义p[i][j]为从i到j所需要买的最 ...
- Codeforces #550 (Div3) - G.Two Merged Sequences(dp / 贪心)
Problem Codeforces #550 (Div3) - G.Two Merged Sequences Time Limit: 2000 mSec Problem Description T ...
- Codeforces Round #353 (Div. 2) E. Trains and Statistic dp 贪心
E. Trains and Statistic 题目连接: http://www.codeforces.com/contest/675/problem/E Description Vasya comm ...
- CodeForces - 940E - Cashback +贪心+DP
传送门:CodeForces - 940E - Cashback 题意:在一个长度为n的数组中,可以分出长度为 k 连续的多个数组b(每个数组 b 的 k 可不相同),然后,可以对每个数组 b 进行删 ...
随机推荐
- Spring Security OAuth2学习
什么是 oAuth oAuth 协议为用户资源的授权提供了一个安全的.开放而又简易的标准.与以往的授权方式不同之处是 oAuth 的授权不会使第三方触及到用户的帐号信息(如用户名与密码),即第三方无需 ...
- 【SpringCloud之pigx框架学习之路 】1.基础环境安装
[SpringCloud之pigx框架学习之路 ]1.基础环境安装 [SpringCloud之pigx框架学习之路 ]2.部署环境 1.Cmder.exe安装 (1) windows常用命令行工具 下 ...
- 在macOS苹果电脑上安装Azure DevOps Server(TFS)代理
1. 概述 MacOS是一套运行于苹果Macintosh系列电脑上的操作系统,是首个在商用领域成功的图形用户界面操作系统.Iphone应用软件的开发人员,都使用运行macOS的电脑或mini盒子进行软 ...
- Worker Services的新项目模板
.NET Core3.0创建Worker Services2019-10-24 09:05 成天 阅读(1438) 评论(20) 编辑收藏 .NET CORE 3.0新增了Worker Ser ...
- Knative 初体验:CICD 极速入门
Knative 社区很早就在讨论用 Tekton 替换 Build 模块的相关事宜.Knative Build 官方已经正式说明不再建议使用 Knative Build 了. 如果你知道 Knativ ...
- Netty中的ChannelFuture和ChannelPromise
在Netty使用ChannelFuture和ChannelPromise进行异步操作的处理 这是官方给出的ChannelFutur描述 * | Completed successfully | * + ...
- POS时机未到,POW强攻是实现全球货币的正确道路
POS时机未到,POW强攻是实现全球货币的正确道路 取代现今的货币体系的正确进攻方式是POW强攻,现在的货币是由力量背书的,以后的货币也是由力量背书的,只有因造币耗费的力量超过了所有其它力量的时候才能 ...
- 微信分享网页时自定义缩略图和简介(.net版本)
要实现微信分享网页时自定义缩略图和简介,需开发者在公众平台网站中创建公众号.获取接口权限后,通过微信JS-SDK的分享接口,来实现微信分享功能. 下面来说明实现步骤. 第一部分 准备步骤 步骤一:注册 ...
- XtraReport报表入库单数字转中文大写数字
先看看打印入库单的效果图,看如下: 客户要求合计一行,要求大写中文数字.XtraReport报表是如何做出以上图的效果呢?因为是要把数字转成大写中文数字,得先准备数字转大写中文数字的函数.因网上有很多 ...
- 2019 物易云通java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.物易云通等公司offer,岗位是Java后端开发,因为发展原因最终选择去了物易云通,入职一年时间了,也成为了面 ...