1、分配video_device结构体

2、设置

3、注册  video_register_device

分析vivi.c:

vivi_init( )//入口函数

 vivi_create_instance()

  ret = v4l2_device_register(NULL, &dev->v4l2_dev);

  /*注意dev->v4l2_dev在该函数v4l2_device_registe中被设置,这个结构体在后边将被用到。

  ,这个函数只是做了某些初始化的工作,并没有什么注册

  */

   vfd = video_device_alloc(); 

    1、设置 

    *vfd = vivi_template;

    vivi_template结构体中主要有成员变量:

    .fops = &vivi_fops,

    .ioctl_ops = &vivi_ioctl_ops,

    .release = video_device_release,

    2、
    vfd->v4l2_dev = &dev->v4l2_dev;

    v4l2_dev是在v4l2_device_register()中设置的

    3、设置"ctrl"(用于app的ioctl)。在应用程序中ioctl中可以做什么事情,就是在vivi.c这个地方设置的。(注意本文是分析vivi.c,对于其他的也是一样的)  

      hdl = &dev->ctrl_handler;
      v4l2_ctrl_handler_init(hdl, 11);//初始化一个ctrl_handler

      /*v4l2_ctrl_new_std 添加一个新的标准的ctrl

        v4l2_ctrl_new_custom添加一个客户自定义的ctrl*/
      dev->volume = v4l2_ctrl_new_std(hdl, &vivi_ctrl_ops,V4L2_CID_AUDIO_VOLUME, 0, 255, 1, 200);
      dev->brightness = v4l2_ctrl_new_std(hdl, &vivi_ctrl_ops,V4L2_CID_BRIGHTNESS, 0, 255, 1, 127);
      dev->button = v4l2_ctrl_new_custom(hdl, &vivi_ctrl_button, NULL);
      dev->int32 = v4l2_ctrl_new_custom(hdl, &vivi_ctrl_int32, NULL);
      dev->int64 = v4l2_ctrl_new_custom(hdl, &vivi_ctrl_int64, NULL);

   video_register_device()

    __video_register_device()//在上一篇博客中,这个函数已经简要的分析,在此不再赘述。

vivi 的入口函数:vivi_init()

  static int __init vivi_init(void)

  {   

    for (i = 0; i < n_devs; i++) { /n_devs=1
      ret = vivi_create_instance(i);//调用该函数来创建设备
    }
  }

vivi_create_instance(int inst)

{

  struct video_device *vfd; //这是一个核心的结构,对应视频视频设备节点

  .........

  vfd = video_device_alloc(); //动态分配了一个video_device

  /*这里的vfd被设置成了vivi_template,在后面的代码中会以次设备号为索引把vfd放入到video_device[]中,在其它函数中根据次设备号从video_device[]数组中获取的video_deice就是vivi_template*/

  *vfd = vivi_template;

  ret = video_register_device(vfd, VFL_TYPE_GRABBER, video_nr);

}

如何写v4l2驱动

(1)分配/设置/注册 v4l2_device

  v4l2_device并不重要,里面只是提供了一些辅助的信息,比如自旋锁、引用计数等,目的是给以后的video_device使用

  利用函数v4l2_device_register得到一个结构体v4l2_device结构体

(2)分配video_device

  利用函数video_device_alloc得到结构体video_device

(3)设置

  得到的video_device称为vfd

  a、vfd->v4l2_dev就让该结构体的v4L2_dev指向v4L2_device_register函数得到的结构体v4l2_device

  b、

    *vfd = vivi_template;

    static struct video_device vivi_template = {
      .name = "vivi",
      .fops = &vivi_fops,
      .ioctl_ops = &vivi_ioctl_ops,
      .release = video_device_release,

    }; 

    static const struct v4l2_file_operations vivi_fops = {
      .owner = THIS_MODULE,
      .open = v4l2_fh_open,
      .release = vivi_close,
      .read = vivi_read,
      .poll = vivi_poll,
      .unlocked_ioctl = video_ioctl2, /* V4L2 ioctl handler */
      .mmap = vivi_mmap,
    };   

    static const struct v4l2_ioctl_ops vivi_ioctl_ops = {
      .vidioc_querycap = vidioc_querycap,
      .vidioc_enum_fmt_vid_cap = vidioc_enum_fmt_vid_cap,
      .vidioc_g_fmt_vid_cap = vidioc_g_fmt_vid_cap,
      .vidioc_try_fmt_vid_cap = vidioc_try_fmt_vid_cap,
      .vidioc_s_fmt_vid_cap = vidioc_s_fmt_vid_cap,
      .vidioc_reqbufs = vidioc_reqbufs,
      .vidioc_querybuf = vidioc_querybuf,
      .vidioc_qbuf = vidioc_qbuf,
      .vidioc_dqbuf = vidioc_dqbuf,
      .vidioc_s_std = vidioc_s_std,
      .vidioc_enum_input = vidioc_enum_input,
      .vidioc_g_input = vidioc_g_input,
      .vidioc_s_input = vidioc_s_input,
      .vidioc_streamon = vidioc_streamon,
      .vidioc_streamoff = vidioc_streamoff,
      .vidioc_log_status = v4l2_ctrl_log_status,
      .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
      .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
    };

  可以用下面这幅图简要说明其中的关系:

    

  c、app可以通过ioctl来设置、获得亮度等信息

    驱动程序里面谁来接收、存储、设置到硬件或提供信息给硬件

    在驱动程序里面抽象出一个结构体v4l2_ctrl,称为属性。每个v4l2_ctrl对应一项,比如说亮度、音量等信息。

    用v4l2_ctrl_handler来管理v4l2_ctrl。v4l2_ctrl_handler就像一个链表一样,里面需要填充各个属性,也可理解为设置各个属性。

     (1)v4L2_ctrl_handler_init  初始化一个ctrl_handler

     (2)v4L2_ctrl_new_std     v4L2_ctrl_new_custom

        创建v4L2_ctrl,并且放入链表v4L2_ctrl_handler中

     (3)与video_dev关联

        v4L2_dev.ctrl_handler = hdl //将上面两步创建出来的v4L2_ctrl_handler赋给v4L2_dev中的ctrl_handler

        video_dev->v4L2_dev = v4L2_dev  //video_dev是我们的核心。

      

初识V4L2(三)-------分析vivi.c 虚拟视频驱动的更多相关文章

  1. 彻底分析虚拟视频驱动vivi(三)

    在Ubuntu系统中接上usb摄像头设备时,系统会自动安装对应的usb设备驱动程序.我们现在要使用自己编译的vivi驱动,该怎么办呢? 1.先安装系统自带的vivi驱动和它所依赖的所有驱动:sudo ...

  2. 2.2 vivi虚拟视频驱动测试

    学习目标:在linux终端安装xawtv,并测试vivi.ko驱动程序. 一.安装xawtv 1)ubuntu能上网情况下,使用命令:# sudo apt-get install xawtv 2)如果 ...

  3. 摄像头驱动——V4L2框架分析

    一.概述 Video for Linux 2,简称V4l2,是Linux内核中关于视频设备的内核驱动框架,为上层的访问底层的视频设备提供了统一的接口. 摄像头驱动是属于字符设备驱动程序.(分析linu ...

  4. 二十四、V4L2框架主要结构体分析和虚拟摄像头驱动编写

    一.V4L2框架主要结构体分析 V4L2(video for linux version 2),是内核中视频设备的驱动框架,为上层访问视频设备提供统一接口. V4L2整体框架如下图: 图中主要包括两层 ...

  5. V4L2(二)虚拟摄像头驱动vivi深入分析【转】

    转自:http://www.cnblogs.com/tureno/articles/6694463.html 转载于: http://blog.csdn.net/lizuobin2/article/d ...

  6. DAVINCI DM6446 开发攻略——V4L2视频驱动和应用分析

     针对DAVINCI DM6446平台,网络上也有很多网友写了V4L2的驱动,但只是解析Montavista linux-2.6.10 V4L2的原理.结构和函数,深度不够.本文决定把Montavis ...

  7. V4L2学习(五)VIVI虚拟摄像头驱动

    概述 前面简单分析了内核中虚拟摄像头驱动 vivi 的框架与实现,本文参考 vivi 来写一个虚拟摄像头驱动,查询.设置视频格式相对简单,难点在于 vb2_buf 的处理过程. 数据采集流程分析 在我 ...

  8. 8、摄像头驱动_Linux的V4L2架构分析

    V4L2架构可以参考  linux-3.4.2\Documentation\video4linux\v4l2-framework.txt V4L2全名为Video For Linux 2,它是针对Li ...

  9. 【原创】Linux v4l2框架分析

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

随机推荐

  1. 巡风视图函数源码学习--view.py

    记录一下巡风扫描器view.py这个脚本里的视图函数的学习,直接在代码里面做的注释,里面有一些print 代码是为了把数据打印出来小白我自己加的,勿怪勿怪.可能存在一些理解错误和不到位的地方,希望大佬 ...

  2. Pwnable-blukat

    ssh blukat@pwnable.kr -p2222 (pw: guest) 连接上去看看c的源码 #include <stdio.h> #include <string.h&g ...

  3. 【Spring JDBC】数据源配置(二)

    一.Spring内置数据源 1. 创建Maven Project,修改pom.xml <properties> <!-- JDK版本 --> <java.version& ...

  4. 用 FFLIB 实现 Apex 企业设计模式

    Apex 企业设计模式将应用分为服务层.模型层.选择逻辑层.工作单元几个部分.FFLIB 是一个开源的 Apex 框架,可以帮助开发者快速建立相关的功能. FFLIB 的安装 FFLIB 可以直接部署 ...

  5. linux常用终端命令

    01. 终端命令格式 command [-options] [parameter] 说明: command:命令名,相应功能的英文单词或单词的缩写 [-options]:选项,可用来对命令进行控制,也 ...

  6. 【2019.7.25 NOIP模拟赛 T3】树(tree)(dfs序列上开线段树)

    没有换根操作 考虑如果没有换根操作,我们该怎么做. 我们可以求出原树的\(dfs\)序列,然后开线段树维护. 对于修改操作,我们可以倍增求\(LCA\),然后在线段树上修改子树内的值. 对于询问操作, ...

  7. Loj #2553. 「CTSC2018」暴力写挂

    Loj #2553. 「CTSC2018」暴力写挂 题目描述 temporaryDO 是一个很菜的 OIer .在 4 月,他在省队选拔赛的考场上见到了<林克卡特树>一题,其中 \(k = ...

  8. QuantLib 金融计算——自己动手封装 Python 接口(1)

    目录 QuantLib 金融计算--自己动手封装 Python 接口(1) 概述 QuantLib 如何封装 Python 接口? 自己封装 Python 接口 封装 Array 和 Matrix 类 ...

  9. 修改Hexo自动生成的HTML文件名

    导读 我们在使用Hexo框架生成静态博客时,其实是将你写好的.md文件输出成HTML文件进行渲染,其中HTML的文件名称就是.md的文件名称. 而我们为了编辑文章方便,为了通过文件名就知道这是哪篇文章 ...

  10. RStudio 不中断下载依赖包

    修改下载方式: