HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)
Turn the pokers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1064 Accepted Submission(s): 398
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000).
The next line contains n integers Xi(0<=Xi<=m).
3 2 3
3 3
3 2 3
3
For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)
最终的结果一定是连续出现的,只需要求出最终的区间。
因为如果对同一张牌进行两次操作,牌的状态不改变。故牌的翻转次数一定是减少偶数次。如果所有数的和是奇数,那么最终结果也一定是奇数。同理,偶数也是一样的。
所以只要递推求出最后的区间,计算sum(C(xi,m)(i=0,1,2。。。)),m是总牌数,xi是在区间内连续的奇数或偶数,在模10^9+9就是最终的答案。
#include <cstdio>
#include <iostream>
#include <cmath>
#define Mod 1000000009
#define max(x,y) ((x)>(y)?x:y)
#define min(x,y) ((x)<(y)?x:y)
using namespace std;
long long J[];
int n,m,a[],l,r,nl,nr;
void Predo(){
J[]=;
for(int i=;i<=;i++)
J[i]=(J[i-]*i)%Mod;
}
long long Q(long long a,long long p){
int e[],k=;
while(p){
e[k++]=p%;
p=p/;
}
long long tmp=;
for(int i=k-;i>=;i--)
if(e[i]) tmp=((tmp*tmp)%Mod*a)%Mod;
else tmp=(tmp*tmp)%Mod;
return tmp;
}
long long C(int n,int m){
return ((J[n]*Q(J[m],Mod-))%Mod*Q(J[n-m],Mod-))%Mod;
}
int main()
{
Predo();
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
int l=r=a[];
for(int i=;i<n;i++){
nl=min(abs(l-a[i]),abs(r-a[i]));
if(l<=a[i]&&a[i]<=r){
if((a[i]-l)%==) nl=;
else nl=;
}
nr=max(l+a[i]<=m?l+a[i]:*m-l-a[i] , r+a[i]<=m?r+a[i]:*m-r-a[i]);
if(m-r<=a[i]&&a[i]<=m-l){
if((a[i]-(m-r))%==) nr=m;
else nr=m-;
}
l=nl;
r=nr;
}
long long ans=;
for(int i=l;i<=r;i=i+)
ans=(ans+C(m,i))%Mod;
printf("%lld\n",ans);
}
return ;
}
HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)的更多相关文章
- HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4869 Turn the pokers (2014 多校联合第一场 I)
HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...
- HDU 4869 Turn the pokers(推理)
HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...
- hdu 4869 Turn the pokers (2014多校联合第一场 I)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4869 Turn the pokers (思维)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4869 Turn the pokers(思维+组合公式+高速幂)
pid=4869" target="_blank">Turn the pokers 大意:给出n次操作,给出m个扑克.然后给出n个操作的个数a[i],每一个a[i] ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- hdu 4869 Turn the pokers(组合数+费马小定理)
Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...
- HDU 4869 Turn the pokers(思维+逆元)
考试的时候没有做出来... 想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数. 原来直接模拟一遍就可以算出来最后的端点... 剩下的就是组合数取模了,用逆元就行了... # incl ...
随机推荐
- “Microsoft Visual Studio遇到了问题,需要关闭”解决办法
运行VS2008,打开项目,弹出错误界面 . 解决办法:将项目中的所有设计窗体关闭并保存,重新打开就OK~
- 64bit Ubuntu, Android AAPT, R.java
Ubuntu 13.10 aapt: error while loading shared libraries: libstdc++.so.6: cannot open shared object f ...
- SAP如何使用关于序列号的表
- JAVA SSH 框架介绍
SSH 为 struts+spring+hibernate 的一个集成框架,是目前较流行的一种JAVA Web应用程序开源框架. Struts Struts是一个基于Sun J2EE平台的MVC框架, ...
- Android ADB 端口占用问题解决方案
问题描述: The connection to adb is down, and a severe error has occured. You must restart adb and Eclips ...
- c# 取 list前100条数据
[问] List<KeyWord> sortedList = (from a in keyWordList orderby a.Total descending select a).ToL ...
- MYSQL-实现ORACLE- row_number() over(partition by ) 分组排序功能
MYSQL-实现ORACLE- row_number() over(partition by ) 分组排序功能 由于MYSQL没有提供类似ORACLE中OVER()这样丰富的分析函数. 所以在MYSQ ...
- UVA 10954 Add All 哈夫曼编码
题目链接: 题目 Add All Time Limit:3000MS Memory Limit:0KB 问题描述 Yup!! The problem name reflects your task; ...
- web系统之session劫持解决
session劫持是一种比较复杂的攻击方法.大部分互联网上的电脑多存在被攻击的危险.这是一种劫持tcp协议的方法,所以几乎所有的局域网,都存在被劫持 可能. 两台主机要想进行TCP通信,必须经过一个三 ...
- MySQL性能优化的最佳20+条经验(转)
今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我 们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数 ...