Turn the pokers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1064    Accepted Submission(s): 398

Problem Description
During summer vacation,Alice stay at home for a long time, with nothing to do. She went out and bought m pokers, tending to play poker. But she hated the traditional gameplay. She wants to change. She puts these pokers face down, she decided to flip poker n times, and each time she can flip Xi pokers. She wanted to know how many the results does she get. Can you help her solve this problem?
 
Input
The input consists of multiple test cases. 
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000). 
The next line contains n integers Xi(0<=Xi<=m).
 
Output
Output the required answer modulo 1000000009 for each test case, one per line.
 
Sample Input
3 4
3 2 3
3 3
3 2 3
 
Sample Output
8
3

Hint

For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)

 

果然又是一道神题目,用到的知识点真心多且有用。
 
快速幂+费马小定理+巧妙的思路
 
费马小定理:假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p)因此 a * a^(p-2)  ≡1(mod p),即 a的乘法逆元是a^(p-2)
因此题目需要求组合数:( n!/m!(n-m)! ) mod p =[ n! mod p ]*[ (m! mod p)^(p-2) mod p]*[ ((n-m)! mod p)^(p-2) mod p] mod p
 
多搞几个数据,可以发现,只需找到最少翻动牌个数与最多翻动牌个数即可,中间的状态是连续的,剩下就是排列的问题了。
因为每次翻一张牌,则正面增加1,反面减1,因此翻动的牌数是偶数变化的,又翻的牌可以随机,所以其最多与最少翻动牌数中间每隔一个都是允许出现的情况。
 
官方题解:

最终的结果一定是连续出现的,只需要求出最终的区间。

因为如果对同一张牌进行两次操作,牌的状态不改变。故牌的翻转次数一定是减少偶数次。如果所有数的和是奇数,那么最终结果也一定是奇数。同理,偶数也是一样的。

所以只要递推求出最后的区间,计算sum(C(xi,m)(i=0,1,2。。。)),m是总牌数,xi是在区间内连续的奇数或偶数,在模10^9+9就是最终的答案。

#include <cstdio>
#include <iostream>
#include <cmath>
#define Mod 1000000009
#define max(x,y) ((x)>(y)?x:y)
#define min(x,y) ((x)<(y)?x:y)
using namespace std;
long long J[];
int n,m,a[],l,r,nl,nr;
void Predo(){
J[]=;
for(int i=;i<=;i++)
J[i]=(J[i-]*i)%Mod;
}
long long Q(long long a,long long p){
int e[],k=;
while(p){
e[k++]=p%;
p=p/;
}
long long tmp=;
for(int i=k-;i>=;i--)
if(e[i]) tmp=((tmp*tmp)%Mod*a)%Mod;
else tmp=(tmp*tmp)%Mod;
return tmp;
}
long long C(int n,int m){
return ((J[n]*Q(J[m],Mod-))%Mod*Q(J[n-m],Mod-))%Mod;
}
int main()
{
Predo();
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
int l=r=a[];
for(int i=;i<n;i++){
nl=min(abs(l-a[i]),abs(r-a[i]));
if(l<=a[i]&&a[i]<=r){
if((a[i]-l)%==) nl=;
else nl=;
}
nr=max(l+a[i]<=m?l+a[i]:*m-l-a[i] , r+a[i]<=m?r+a[i]:*m-r-a[i]);
if(m-r<=a[i]&&a[i]<=m-l){
if((a[i]-(m-r))%==) nr=m;
else nr=m-;
}
l=nl;
r=nr;
}
long long ans=;
for(int i=l;i<=r;i=i+)
ans=(ans+C(m,i))%Mod;
printf("%lld\n",ans);
}
return ;
}

HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)的更多相关文章

  1. HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU 4869 Turn the pokers (2014 多校联合第一场 I)

    HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...

  3. HDU 4869 Turn the pokers(推理)

    HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...

  4. hdu 4869 Turn the pokers (2014多校联合第一场 I)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. hdu 4869 Turn the pokers (思维)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 4869 Turn the pokers(思维+组合公式+高速幂)

    pid=4869" target="_blank">Turn the pokers 大意:给出n次操作,给出m个扑克.然后给出n个操作的个数a[i],每一个a[i] ...

  7. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  8. hdu 4869 Turn the pokers(组合数+费马小定理)

    Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...

  9. HDU 4869 Turn the pokers(思维+逆元)

    考试的时候没有做出来... 想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数. 原来直接模拟一遍就可以算出来最后的端点... 剩下的就是组合数取模了,用逆元就行了... # incl ...

随机推荐

  1. SSMS 2008R2没有智能感知方法解决

    有时SSMS会莫明奇妙的没有了智能感知(前一天还是有的, 第2天就没有了) 在网上查到有如下原因: 1. 服务器上有Offline的DB 解决方案: 将Offline的DB删掉或者设成online即可 ...

  2. Team Homework #3

    我们组采访了以下几组学长学姐.因为隐私问题我们不会写出他们的个人信息. 1:平均每周所花时间:10:平均写的代码总数:2000:最有用的部分:锻炼团队合作精神:最没用的部分:写博客:改进:完全不需要博 ...

  3. How to use Android Activity's finish(), onDestory() and System.exit(0) methods

    Activity.finish() Calling this method will let the system know that the programmer wants the current ...

  4. 解决方法:java.lang.NoSuchMethodError: javax.persistence.Table.indexes()[Ljavax/persistence/Index;

    hibernate4.3版本 报错: 把实体注解的声明方式修改一下解决,如: 将 @Entity@Table(name=”table_name”)改为@Entity(name=”table_name” ...

  5. [转载]数据库存储图片(MSSQL/ORACLE/ACCESS

    下面我来汇总一下如何将图片保存到SqlServer.Oracle.Access数据库中.首先,我们要明白图片是以二进制的形式保存在数据库中的,那么把图片保存到数据库中的步骤大体上有这几步1.将图片转换 ...

  6. 使用静态变量的方法求n!

    下面的程序可以输出1-5的阶乘值,如果需要把5改为n,则可求出1-n的阶乘值. void main() { setvbuf(stdout,NULL,_IONBF,); int fac(int n); ...

  7. thinpad E43系列WIN8装WIN7系统

    昨晚WIN8系统下装WIN7 折腾了好久,故此总结一下写一篇U盘装WIN7 : 先简述一下思路:BOSS设置启动项------->U盘启动--------> 进入PE删除所有分区----- ...

  8. HDU 1385 Minimum Transport Cost (最短路,并输出路径)

    题意:给你n个城市,一些城市之间会有一些道路,有边权.并且每个城市都会有一些费用. 然后你一些起点和终点,问你从起点到终点最少需要多少路途. 除了起点和终点,最短路的图中的每个城市的费用都要加上. 思 ...

  9. SDUT1586 计算组合数(组合数)

    这个题数据量小,不容易超时. #include<stdio.h> long long fac(int n) { ; ; i <= n ; i++) { m = i*m; } retu ...

  10. POJ1046Color Me Less

    http://poj.org/problem?id=1046 据说这个题是个水题,但我还是WA了好几次,最后才改对了 #include<cstdio> #include<cstrin ...