2705: [SDOI2012]Longge的问题

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 2507  Solved: 1531
[Submit][Status][Discuss]

Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

Input

一个整数,为N。

Output

一个整数,为所求的答案。

Sample Input

6

Sample Output

15
 
 
 
 
【题解】
 
设gcd(m,n)=k的m的个数为s(k),k为n的约数
 
则ans=sigma(k*s(k))
 
由gcd(m,n)=k,gcd(m/k,n/k)=1,所以s(k)=phi(n/k)
 
时间复杂度O(nlogn)
 
 /*************
bzoj 2705
by chty
2016.11.4
*************/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,m,ans;
inline ll read()
{
ll x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
ll phi(ll x)
{
ll sum=x;
for(ll i=;i<=m;i++)
{
if(x%i==) sum=sum/i*(i-);
while(x%i==) x/=i;
}
if(x>) sum=sum/x*(x-);
return sum;
}
int main()
{
freopen("cin.in","r",stdin);
freopen("cout.out","w",stdout);
n=read();
m=(ll)sqrt(n*1.0);
for(ll i=;i<=m;i++)
if(n%i==)
{
ans+=i*phi(n/i);
if(i*i<n) ans+=(n/i)*phi(i);
}
printf("%lld\n",ans);
return ;
}
 
 
 

【bzoj2705】[SDOI2012]Longge的问题的更多相关文章

  1. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  2. BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  3. 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N).   Solut ...

  4. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  5. bzoj2705: [SDOI2012]Longge的问题 欧拉定理

    题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...

  6. 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题

    ∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...

  7. [BZOJ2705][SDOI2012]Longge的问题 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...

  8. bzoj2705 [SDOI2012]Longge的问题——因数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 一开始自己想了半天... 有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. Django 碎片集合

    命令行创建Django项目 熟记建立django命令:django-admin startproject xx   (start   project) 目录介绍 manage.py 文件是用来管理文件 ...

  2. LINUX (centos)设置IP地址,网关,DNS

    首先:备份原始配置文件: [logonmy@logon ~]$ cd /etc/sysconfig/network-scripts/ [logon@logon network-scripts]$ pw ...

  3. 转载:TCP连接的状态详解以及故障排查

    FROM:http://blog.csdn.net/hguisu/article/details/38700899 该博文的条理清晰,步骤明确,故复制到这个博文中收藏,若文章作者看到且觉得不能装载,麻 ...

  4. fileUtil文件的上传下载

    package com.beisun.mbp.util; import java.io.BufferedInputStream;import java.io.BufferedOutputStream; ...

  5. PS基础教程:[8]蒙版使用实例

    蒙版是PS中我们最常使用的工具,使用蒙版合成图片可以制作出非常绚丽的效果,并且看上去感觉很真,下面就以一个实例为大家分享一下蒙版的基本使用. 方法 1.在PS中打开准备好的素材,这里主要介绍蒙版的使用 ...

  6. CMCC有限的访问权限如何解决

    最近两天一直出现这个问题,连接CMCC-EDU的时候就是连接不上,提示有限的访问权限,什么诊断和修复IP自动获取都不管用,就是连接不上.怎么说本人也是一个电脑迷,越到这样不靠谱的问题确实不知道如何解决 ...

  7. bzoj 4448 情报传递

    Written with StackEdit. Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有\(n\)名情报员.每名情报员能有若干名(可能没有)下线,除\ ...

  8. 洛谷3778 [APIO2017]商旅

    题目:https://www.luogu.org/problemnew/show/P3778 一看就是0/1分数规划.但不能直接套模板,因为有个商品种类的限制. 考虑从a买在b卖,商品种类根本没用,关 ...

  9. eclipse配置hadoop2.7.2开发环境并本地跑起来

    先安装并启动hadoop,怎么弄见上文http://www.cnblogs.com/wuxun1997/p/6847950.html.这里说下怎么设置IDE来开发hadoop代码和调试.首先要确保你本 ...

  10. HTTP/HTTPS原理详解

    简介 HTTP(Hypertext Transfer Protocal,超文本传输协议)是WWW(World Wide Web,万维网)数据传输的基础,规定如何传输超文本.HTTP协议存在多个版本:H ...