2705: [SDOI2012]Longge的问题

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 2507  Solved: 1531
[Submit][Status][Discuss]

Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

Input

一个整数,为N。

Output

一个整数,为所求的答案。

Sample Input

6

Sample Output

15
 
 
 
 
【题解】
 
设gcd(m,n)=k的m的个数为s(k),k为n的约数
 
则ans=sigma(k*s(k))
 
由gcd(m,n)=k,gcd(m/k,n/k)=1,所以s(k)=phi(n/k)
 
时间复杂度O(nlogn)
 
 /*************
bzoj 2705
by chty
2016.11.4
*************/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,m,ans;
inline ll read()
{
ll x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
ll phi(ll x)
{
ll sum=x;
for(ll i=;i<=m;i++)
{
if(x%i==) sum=sum/i*(i-);
while(x%i==) x/=i;
}
if(x>) sum=sum/x*(x-);
return sum;
}
int main()
{
freopen("cin.in","r",stdin);
freopen("cout.out","w",stdout);
n=read();
m=(ll)sqrt(n*1.0);
for(ll i=;i<=m;i++)
if(n%i==)
{
ans+=i*phi(n/i);
if(i*i<n) ans+=(n/i)*phi(i);
}
printf("%lld\n",ans);
return ;
}
 
 
 

【bzoj2705】[SDOI2012]Longge的问题的更多相关文章

  1. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  2. BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  3. 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N).   Solut ...

  4. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  5. bzoj2705: [SDOI2012]Longge的问题 欧拉定理

    题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...

  6. 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题

    ∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...

  7. [BZOJ2705][SDOI2012]Longge的问题 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...

  8. bzoj2705 [SDOI2012]Longge的问题——因数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 一开始自己想了半天... 有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. android wifi 热点、socket通讯

    WiFi管理工具类 package com.wyf.app.common; import java.lang.reflect.InvocationTargetException; import jav ...

  2. Java类和数据结构中常用的方法

    1.Object类里面常用的方法: protected Object clone()创建并返回此对象的一个副本. boolean equals(Object obj)指示其他某个对象是否与此对象“相等 ...

  3. ul li 水平居中

    li的float:left方法显然有一个问题,就是无法居中(水平),只能使用padding-left或margin-right的方法方法来固定其居中.但这样可能在宽屏与窄屏的显示不一致.使用这种方法主 ...

  4. 通过docker构建zabbix监控系统

    下载zabbix的镜像 $ docker pull berngp/docker-zabbix Using default tag: latest latest: Pulling from berngp ...

  5. Python学习笔记之os模块

    Python中的os提供了非常丰富的方法用来处理文件和目录,下面我们将详细的介绍os相关的一些方法和函数: os 路径相关的函数: 1.os.listdir(dirname):列出dirname目录下 ...

  6. 获取sonar扫描结果

    api通过抓包获取 java 1.get和post方法 package com.tools.httpUtil; import java.io.BufferedReader; import java.i ...

  7. Vue.js:template

    ylbtech-Vue.js: 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   7.返回顶部   8.返回顶部   9.返回顶部   1 ...

  8. git rebase 与 merge(个人使用理解)

    merge 是“合并”,rebase.cherry-pick 中文能理解成“重现” merge 一般是对于整个分支做处理,比如一个feature分支,功能开发完成经过测试了,我们会合并(merge)到 ...

  9. MariaDB 脚本

    研究MariaDB, 需要mock up一些假数据: 生成n个长度整型数的函数rand_num: CREATE DEFINER=`root`@`localhost` FUNCTION `rand_nu ...

  10. LT3756/LT3756-1/LT3756-2 - 100VIN、100VOUT LED 控制器

    LT3756/LT3756-1/LT3756-2 - 100VIN.100VOUT LED 控制器 特点 3000:1 True Color PWMTM调光 宽输入电压范围:6V至 100V 输出电压 ...