10.7 Imagine a web server for a simplified search engine. This system has 100 machines to respond to search queries, which may then call out using processSearch(string query) to another cluster of machines to actually get the result. The machine which responds to a given query is chosen at random, so you can not guarantee that the same machine will always respond to the same request. The method processSearch is very expensive. Design a caching mechanism for the most recent queries. Be sure to explain how you would update the cache when data changes.

这道题说假设有一个简单搜索引擎的网络服务器,系统共有100个机子来响应检索,可以用processSearch(string query)来得到其他机子上的结果,每台机子响应检索是随机的,不保证每个机子都会响应到同一个请求。processSearch方法非常昂贵,设计一个缓存机制来应对近期检索。根据书中描述,我们先来做一些假设:

1. 与其说根据需要调用processSearch,倒不如设定所有的检索处理发生在第一个被调用的机子上。

2. 我们需要缓存的检索是非常大量的。

3. 机器之间的调用很快。

4. 检索的结果是一个有序的URL链表,每个URL由50个字符的标题和200个字符的概要组成。

5. 最常访问的检索会一直出现的缓存器中。

系统需求:

主要需要实现下列两个功能:

1. 高效查找当给定了一个关键字时

2. 新数据会代替旧数据的位置

我们还需要更新和清楚缓存当搜索结果改变了。由于一些检索非常的常见病永久的在缓存器中,我们不能等缓存器自然失效。

步骤一:设计单个系统的存存器

我们可以混合使用链表和哈希表来实现,我们建立一个链表,当某个节点被访问了,自动将其移到开头,这样链表的末尾就是最老的数据。我们用哈希表来建立检索和链表中节点的映射,这样不仅可以让我们高效的返回缓存的结果,而且可以把节点移到链表前段,参见代码如下:

class Node {
public:
Node *pre;
Node *next;
vector<string> results;
string query;
Node(string q, vector<string> res) {
results = res;
query = q;
}
}; class Cache {
public:
const static int MAX_SIZE = ;
Node *head, *tail;
unordered_map<string, Node*> m;
int size = ;
Cache() {}
void moveToFront(Node *node) {
if (node == head) return;
removeFromLinkedList(node);
node->next = head;
if (head != nullptr) {
head->pre = node;
}
head = node;
++size;
if (tail == nullptr) {
tail = node;
}
}
void moveToFront(string query) {
if (m.find(query) == m.end()) return;
moveToFront(m[query]);
}
void removeFromLinkedList(Node *node) {
if (node == nullptr) return;
if (node->next != nullptr || node->pre != nullptr) {
--size;
}
Node *pre = node->pre;
if (pre != nullptr) {
pre->next = node->next;
}
Node *next = node->next;
if (next != nullptr) {
next->pre = pre;
}
if (node == head) {
head = next;
}
if (node == tail) {
tail = pre;
}
node->next = nullptr;
node->pre = nullptr;
}
vector<string> getResults(string query) {
if (m.find(query) == m.end()) return vector<string>();
Node *node = m[query];
moveToFront(node);
return node->results;
}
void insertResults(string query, vector<string> results) {
if (m.find(query) != m.end()) {
Node *node = m[query];
node->results = results;
moveToFront(node);
return;
}
Node *node = new Node(query, results);
moveToFront(node);
m[query] = node;
if (size > MAX_SIZE) {
for (unordered_map<string, Node*>::iterator it = m.begin(); it != m.end(); ++it) {
if (it->first == tail->query) m.erase(it);
}
removeFromLinkedList(tail);
}
}
};

步骤二: 扩展到多个机子

对于多个机子,我们有许多中选择:

选择1:每个机子有自己的缓存器,这种方法的好处是快速,因为没有机子间的调用,但是缺点是不高效

选择2:每个机子都有缓存器的拷贝,当新项目添加到缓存器,发送给所有的机器,设计目的是为了让常用检索存在于所有机子上,缺点是缓存器的空间有限,无法保存大量数据

选择3:每个机器保存缓存器的一部分,当机器i需要得到一个检索的结果,它需要找出哪个机子有这个结果,并到那个机子上取结果。但是问题是机子i怎么知道那个机子上有结果,我们可以用哈希表来建立映射,hash(query)%N,能快速知道哪个机子有想要的结果。

步骤三:更新结果当内容改变

有些检索很常用,所以会永远存在缓存器中,我们需要一些机制能更新结果,当其内容改变了,缓存器中的结果页应该相应变换,主要有下列三种情况:

1. URL的内容改变了

2. 当网页的排行改变了,那么结果的顺序也变了

3. 对于特定的检索有了新的页面

对于1和2,我们建立单独的哈希表告诉我们哪一个检索和哪个URL之间有映射,这个可以在不同的机子上分别完成,但是可能会需要很多数据。另外,如果数据不需要即时刷新,我们也可以周期性的来更新缓存器。对于3,我们可以实现一个自动超时机制,我们设定一个时间段,如果在这个时间段里没有检索,不管它之间被检索的有多频繁,我们都清除它,这样保证了所有数据都会被周期性的更新。

步骤四:进一步地增强

一个优化是当某个检索特别频繁时,比如一个检索占了1%的比重时,我们与其让机器i发送请求给机器j,倒不如在机器i上将结果存在自己的缓存器中。

再有就是我们将检索根据哈希值分别不同机器,而不是随机分配。

另外一个优化就是之前提到的自动超时Automatic Time Out机制,就是x分钟后自动清除数据,但是有时候我们对不同的数据希望设定不同的x值,这样每一个URL都有一个超时值基于此页面过去被更新的频率。

[CareerCup] 10.7 Simplified Search Engine 简单的搜索引擎的更多相关文章

  1. 微软的一篇ctr预估的论文:Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine。

    周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through R ...

  2. 开源搜索 Iveely Search Engine 0.6.0 发布 -- 黎明前的娇嫩

    快两年了,Iveely Search Engine已经走过了5个版本的岁月,虽出生“贫寒”,没有任何开源基金会的支持,没有优秀的“干爹.干妈”,它凭着它的爱好者的支持,0.6.0终于破壳而出,7年前, ...

  3. [0.0]Analysis of Baidu search engine

    Rencently, my two teammates and I is doing a project, a simplified Chinese search engine for childre ...

  4. Iveely Search Engine 0.4.0 的发布

    千呼万唤始出来,Iveely Search Engine 0.4.0 的发布   经过无数个夜晚的奋战,以及无数个夜晚的失眠,Iveely Search Engine 0.4.0 终于熬出来了,这其中 ...

  5. leetcode 10 Regular Expression Matching(简单正则表达式匹配)

    最近代码写的少了,而leetcode一直想做一个python,c/c++解题报告的专题,c/c++一直是我非常喜欢的,c语言编程练习的重要性体现在linux内核编程以及一些大公司算法上机的要求,pyt ...

  6. 42 Bing Search Engine Hacks

    42 Bing Search Engine Hacks November 13, 2010 By Ivan Remember Bing, the search engine Microsoft lau ...

  7. 解读论文《Agglomerative clustering of a search engine query log》,以解决搜索推荐相关问题

    <Agglomerative clustering of a search engine query log> 论文作者:Doug Beeferman 本文将解读此篇论文,此论文利用搜索日 ...

  8. [DataMining]WEEK1 - text-retrieval and search engine

    What does a computer have to do in order to understand a natural language sentence? What is ambiguit ...

  9. [Search Engine] 搜索引擎分类和基础架构概述

    大家一定不会多搜索引擎感到陌生,搜索引擎是互联网发展的最直接的产物,它可以帮助我们从海量的互联网资料中找到我们查询的内容,也是我们日常学习.工作和娱乐不可或缺的查询工具.之前本人也是经常使用Googl ...

随机推荐

  1. android textview 设置text 字体

    1.使用不同的字库 mLocalClock.setTypeface(Typeface.SANS_SERIF); Typeface face = Typeface.createFromAsset(get ...

  2. [LoadRunner]性能测试实践_Hessian协议脚本编写

    第一步,新建LR的脚本,选择Java Vuser协议: 第二步,编写hessian测试脚本,如下: import lrapi.lr; import java.net.MalformedURLExcep ...

  3. Ubuntu 环境 运行Asp.net mvc +EntityFramework+ Mysql

    关键词:ubuntu,mono,.Net framework 4.5,asp.net mvc 4,Entityframework 6,Mysql Mono安装 参考文章: Install Mono o ...

  4. 《SQL Server企业级平台管理实践》读书笔记——当我们的备份都已经损坏的时候该怎么办

    作为数据库管理员最最痛苦的莫过于,当数据库宕机的时候需要找备份,但在这个时候突然发现备份文件也是坏的,这就意味着数据会丢失,为此可能会丢掉职位,饭碗不保,所以为此,我们一定要保证好备份的完整性,一般发 ...

  5. 第四篇 :微信公众平台开发实战Java版之完成消息接受与相应以及消息的处理

    温馨提示: 这篇文章是依赖前几篇的文章的. 第一篇:微信公众平台开发实战之了解微信公众平台基础知识以及资料准备 第二篇 :微信公众平台开发实战之开启开发者模式,接入微信公众平台开发 第三篇 :微信公众 ...

  6. html3秒跳转

    <script>     setTimeout( 'window.location= "home.jsp " ',3000) ;//注意,此处“;”可加可不加</ ...

  7. vs安装mvc

    需要一个MVC框架和SP1补丁包,SP1补丁包的下载地址为:http://www.microsoft.com/downloads/details.aspx?FamilyID=27673c47-b3b5 ...

  8. ZooKeeper系列3:ZooKeeper命令、命令行工具及简单操作

    问题导读1.ZooKeeper包含哪些常用命令?2.通过什么命令可以列出服务器 watch 的详细信息?3.ZooKeeper包含哪些操作?4.ZooKeeper如何创建zookeeper? 常用命令 ...

  9. Android+Sqlite 实现古诗阅读应用(一)

    不说网络app,很多本地的app都有一些随机的内容推送,比如随机推送一些小知识,古诗,名言名画什么的,界面制作的好看一点就能看起来特别的文艺范, 最近就是看了这样的一些应用,就想自己实现一下,这种方法 ...

  10. Web性能优化之图片延迟加载

    来源:微信公众号CodeL 对于一些图片多,页面长的网页来说,如果每次打开页面加载全部的网页内容,页面加载速度势必会受到影响,如果每次打开网页只将网页可视区域的内容加载给用户 ,将大大提高网页浏览速度 ...