Description

ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m edges between them. Each edge of the graph is weighted, each weight is a positive integer.

The next day, ZS the Coder realized that some of the weights were erased! So he wants to reassign positive integer weight to each of the edges which weights were erased, so that the length of the shortest path between vertices s and t in the resulting graph is exactly L. Can you help him?

Input

The first line contains five integers n, m, L, s, t (2 ≤ n ≤ 1000,  1 ≤ m ≤ 10 000,  1 ≤ L ≤ 109,  0 ≤ s, t ≤ n - 1,  s ≠ t) — the number of vertices, number of edges, the desired length of shortest path, starting vertex and ending vertex respectively.

Then, m lines describing the edges of the graph follow. i-th of them contains three integers, ui, vi, wi (0 ≤ ui, vi ≤ n - 1,  ui ≠ vi,  0 ≤ wi ≤ 109). ui and vi denote the endpoints of the edge and wi denotes its weight. If wi is equal to 0 then the weight of the corresponding edge was erased.

It is guaranteed that there is at most one edge between any pair of vertices.

Output

Print "NO" (without quotes) in the only line if it's not possible to assign the weights in a required way.

Otherwise, print "YES" in the first line. Next m lines should contain the edges of the resulting graph, with weights assigned to edges which weights were erased. i-th of them should contain three integers ui, vi and wi, denoting an edge between vertices ui and vi of weight wi. The edges of the new graph must coincide with the ones in the graph from the input. The weights that were not erased must remain unchanged whereas the new weights can be any positive integer not exceeding 1018.

The order of the edges in the output doesn't matter. The length of the shortest path between s and t must be equal to L.

If there are multiple solutions, print any of them.

Examples
Input
5 5 13 0 4
0 1 5
2 1 2
3 2 3
1 4 0
4 3 4
Output
YES
0 1 5
2 1 2
3 2 3
1 4 8
4 3 4
Input
2 1 123456789 0 1
0 1 0
Output
YES
0 1 123456789
Input
2 1 999999999 1 0
0 1 1000000000
Output
NO
Note

Here's how the graph in the first sample case looks like :

In the first sample case, there is only one missing edge weight. Placing the weight of 8 gives a shortest path from 0 to 4 of length 13.

In the second sample case, there is only a single edge. Clearly, the only way is to replace the missing weight with 123456789.

In the last sample case, there is no weights to assign but the length of the shortest path doesn't match the required value, so the answer is "NO".

正解:dijkstra

解题报告:

  其实这道题也很简单,考场上没想出来真是我傻...

  首先那些可以修改的边最小边权为1,则全部改为1,那么如果此时最短路小于等于L,那么至少是有解的。否则无解。

  然后依次修改当前还差的边权,直到合法,反正CF机子快,丝毫不虚。

  然而我WA了一个晚上,因为我的inf设大了,一加就炸,调了很久才发现...

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const int MOD = ;
int n,m,L,s,t,ecnt;
int first[MAXN],to[MAXM],next[MAXM],w[MAXM],dis[MAXN];
int tag[MAXM];//!!!!!
int dui[MAXN*],head,tail;
bool in[MAXN],ok; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void SPFA(){
//memset(dis,63,sizeof(dis));
for(int i=;i<=n;i++) dis[i]=;//不能设太大!!!不然会炸,WA了好久!!!
dis[s]=; head=tail=; dui[++tail]=s; memset(in,,sizeof(in)); in[s]=;
while(head!=tail) {
head%=n; head++; int u=dui[head]; in[u]=;
for(int i=first[u];i>;i=next[i]) {
int v=to[i];
if(dis[v]>dis[u]+w[i]) {
dis[v]=dis[u]+w[i];
if(!in[v]) { tail%=n; tail++; dui[tail]=v; in[v]=; }
}
}
}
} inline void work(){
//memset(first,-1,sizeof(first));
n=getint(); m=getint(); L=getint(); s=getint()+; t=getint()+;
int x,y,z;ecnt=;
for(int i=;i<=m;i++) {
x=getint()+; y=getint()+; z=getint();
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z; if(z==) tag[ecnt]=,w[ecnt]=;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=z; if(z==) tag[ecnt]=,w[ecnt]=;
}
SPFA(); if(dis[t]>L) { printf("NO"); return ; }
ok=false;
for(int i=;i<=n;i++) {
for(int j=first[i];j>;j=next[j]) {
if(j & )
if(tag[j]) {
if(dis[t]==L){ ok=true ; break;}
if(dis[t]<L) {
w[j]=w[j^]=L-dis[t]+;
SPFA();
}
}
}
if(ok) break;
}
if(!ok && dis[t]!=L) { printf("NO"); }
else{
printf("YES\n");
for(int i=;i<=n;i++)
for(int j=first[i];j>;j=next[j])
if(j&)
printf("%d %d %d\n",to[j]-,to[j^]-,w[j]);
}
} int main()
{
work();
return ;
}

codeforces 715B:Complete The Graph的更多相关文章

  1. Codeforces 715B & 716D Complete The Graph 【最短路】 (Codeforces Round #372 (Div. 2))

    B. Complete The Graph time limit per test 4 seconds memory limit per test 256 megabytes input standa ...

  2. 【Codeforces】716D Complete The Graph

    D. Complete The Graph time limit per test: 4 seconds memory limit per test: 256 megabytes input: sta ...

  3. Codeforces 1009D:Relatively Prime Graph

    D. Relatively Prime Graph time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  4. 【codeforces 716D】Complete The Graph

    [题目链接]:http://codeforces.com/problemset/problem/716/D [题意] 给你一张图; 这张图上有一些边的权值未知; 让你确定这些权值(改成一个正整数) 使 ...

  5. CodeForces 715B Complete The Graph 特殊的dijkstra

    Complete The Graph 题解: 比较特殊的dij的题目. dis[x][y] 代表的是用了x条特殊边, y点的距离是多少. 然后我们通过dij更新dis数组. 然后在跑的时候,把特殊边都 ...

  6. CF715B. Complete The Graph

    CF715B. Complete The Graph 题意: 给一张 n 个点,m 条边的无向图,要求设定一些边的边权 使得所有边权都是正整数,最终 S 到 T 的最短路为 L 1 ≤ n ≤ 100 ...

  7. 算法:图(Graph)的遍历、最小生成树和拓扑排序

    背景 不同的数据结构有不同的用途,像:数组.链表.队列.栈多数是用来做为基本的工具使用,二叉树多用来作为已排序元素列表的存储,B 树用在存储中,本文介绍的 Graph 多数是为了解决现实问题(说到底, ...

  8. 译:Local Spectral Graph Convolution for Point Set Feature Learning-用于点集特征学习的局部谱图卷积

    标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem ...

  9. Codeforces 715B. Complete The Graph 最短路,Dijkstra,构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF715B.html 题解 接下来说的“边”都指代“边权未知的边”. 将所有边都设为 L+1,如果dis(S,T ...

随机推荐

  1. AC日记——产生数 codevs 1009 (弗洛伊德)(组合数学)

    1009 产生数 2002年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Descriptio ...

  2. Android 手势识别类 ( 一 ) GestureDetector 基本介绍

    为了加强鼠标响应事件,Android提供了GestureDetector手势识别类.通过GestureDetector.OnGestureListener来获取当前被触发的操作手势(Single Ta ...

  3. Java中的IO流系统详解(转载)

    摘要: Java 流在处理上分为字符流和字节流.字符流处理的单元为 2 个字节的 Unicode 字符,分别操作字符.字符数组或字符串,而字节流处理单元为 1 个字节,操作字节和字节数组. Java ...

  4. Studying-Swift :Day01

    学习地址:http://www.rm5u.com/    或    http://www.runoob.com/ 如果创建的是 OS X playground 需要引入 Cocoa;  如果我们想创建 ...

  5. C语言错误 BUG报错整理

    错误一 关键字:间接寻址级别不同 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> ...

  6. EF code First数据迁移学习笔记(转)

    转自:http://www.cnblogs.com/icyJ/p/migration.html 准备工作 1.新建一个控制台项目, 在"程序包管理控制台"执行 Install-pa ...

  7. [CareerCup] 1.6 Rotate Image 翻转图像

    1.6 Given an image represented by an NxN matrix, where each pixel in the image is 4 bytes, write a m ...

  8. 客户端禁用cookies后session是否还起效果

    设置session和cookies的代码(webform1.aspx) if (txtName.Text == "wlzcool") { Session["uid&quo ...

  9. double相加(減)结果会有些误差

    前提介绍 今天在调试代码的时候发现了一个double类型数据相减的有趣问题,148163.1 - 82692.09大家猜猜结果等于多少,经过调试最终为5471.010000000009. 是不是很奇怪 ...

  10. HoloLens开发手记 - Unity之场景共享 Shared holographic experiences in Unity

    佩戴HoloLens的多个用户可以使用场景共享特性来获取集合视野,并可以与固定在空间中某个位置的同一全息对象进行交互操作.这一切是通过空间锚共享(Anchor Sharing)来实现的. 为了使用共享 ...