Description

ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m edges between them. Each edge of the graph is weighted, each weight is a positive integer.

The next day, ZS the Coder realized that some of the weights were erased! So he wants to reassign positive integer weight to each of the edges which weights were erased, so that the length of the shortest path between vertices s and t in the resulting graph is exactly L. Can you help him?

Input

The first line contains five integers n, m, L, s, t (2 ≤ n ≤ 1000,  1 ≤ m ≤ 10 000,  1 ≤ L ≤ 109,  0 ≤ s, t ≤ n - 1,  s ≠ t) — the number of vertices, number of edges, the desired length of shortest path, starting vertex and ending vertex respectively.

Then, m lines describing the edges of the graph follow. i-th of them contains three integers, ui, vi, wi (0 ≤ ui, vi ≤ n - 1,  ui ≠ vi,  0 ≤ wi ≤ 109). ui and vi denote the endpoints of the edge and wi denotes its weight. If wi is equal to 0 then the weight of the corresponding edge was erased.

It is guaranteed that there is at most one edge between any pair of vertices.

Output

Print "NO" (without quotes) in the only line if it's not possible to assign the weights in a required way.

Otherwise, print "YES" in the first line. Next m lines should contain the edges of the resulting graph, with weights assigned to edges which weights were erased. i-th of them should contain three integers ui, vi and wi, denoting an edge between vertices ui and vi of weight wi. The edges of the new graph must coincide with the ones in the graph from the input. The weights that were not erased must remain unchanged whereas the new weights can be any positive integer not exceeding 1018.

The order of the edges in the output doesn't matter. The length of the shortest path between s and t must be equal to L.

If there are multiple solutions, print any of them.

Examples
Input
5 5 13 0 4
0 1 5
2 1 2
3 2 3
1 4 0
4 3 4
Output
YES
0 1 5
2 1 2
3 2 3
1 4 8
4 3 4
Input
2 1 123456789 0 1
0 1 0
Output
YES
0 1 123456789
Input
2 1 999999999 1 0
0 1 1000000000
Output
NO
Note

Here's how the graph in the first sample case looks like :

In the first sample case, there is only one missing edge weight. Placing the weight of 8 gives a shortest path from 0 to 4 of length 13.

In the second sample case, there is only a single edge. Clearly, the only way is to replace the missing weight with 123456789.

In the last sample case, there is no weights to assign but the length of the shortest path doesn't match the required value, so the answer is "NO".

正解:dijkstra

解题报告:

  其实这道题也很简单,考场上没想出来真是我傻...

  首先那些可以修改的边最小边权为1,则全部改为1,那么如果此时最短路小于等于L,那么至少是有解的。否则无解。

  然后依次修改当前还差的边权,直到合法,反正CF机子快,丝毫不虚。

  然而我WA了一个晚上,因为我的inf设大了,一加就炸,调了很久才发现...

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const int MOD = ;
int n,m,L,s,t,ecnt;
int first[MAXN],to[MAXM],next[MAXM],w[MAXM],dis[MAXN];
int tag[MAXM];//!!!!!
int dui[MAXN*],head,tail;
bool in[MAXN],ok; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void SPFA(){
//memset(dis,63,sizeof(dis));
for(int i=;i<=n;i++) dis[i]=;//不能设太大!!!不然会炸,WA了好久!!!
dis[s]=; head=tail=; dui[++tail]=s; memset(in,,sizeof(in)); in[s]=;
while(head!=tail) {
head%=n; head++; int u=dui[head]; in[u]=;
for(int i=first[u];i>;i=next[i]) {
int v=to[i];
if(dis[v]>dis[u]+w[i]) {
dis[v]=dis[u]+w[i];
if(!in[v]) { tail%=n; tail++; dui[tail]=v; in[v]=; }
}
}
}
} inline void work(){
//memset(first,-1,sizeof(first));
n=getint(); m=getint(); L=getint(); s=getint()+; t=getint()+;
int x,y,z;ecnt=;
for(int i=;i<=m;i++) {
x=getint()+; y=getint()+; z=getint();
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z; if(z==) tag[ecnt]=,w[ecnt]=;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=z; if(z==) tag[ecnt]=,w[ecnt]=;
}
SPFA(); if(dis[t]>L) { printf("NO"); return ; }
ok=false;
for(int i=;i<=n;i++) {
for(int j=first[i];j>;j=next[j]) {
if(j & )
if(tag[j]) {
if(dis[t]==L){ ok=true ; break;}
if(dis[t]<L) {
w[j]=w[j^]=L-dis[t]+;
SPFA();
}
}
}
if(ok) break;
}
if(!ok && dis[t]!=L) { printf("NO"); }
else{
printf("YES\n");
for(int i=;i<=n;i++)
for(int j=first[i];j>;j=next[j])
if(j&)
printf("%d %d %d\n",to[j]-,to[j^]-,w[j]);
}
} int main()
{
work();
return ;
}

codeforces 715B:Complete The Graph的更多相关文章

  1. Codeforces 715B & 716D Complete The Graph 【最短路】 (Codeforces Round #372 (Div. 2))

    B. Complete The Graph time limit per test 4 seconds memory limit per test 256 megabytes input standa ...

  2. 【Codeforces】716D Complete The Graph

    D. Complete The Graph time limit per test: 4 seconds memory limit per test: 256 megabytes input: sta ...

  3. Codeforces 1009D:Relatively Prime Graph

    D. Relatively Prime Graph time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  4. 【codeforces 716D】Complete The Graph

    [题目链接]:http://codeforces.com/problemset/problem/716/D [题意] 给你一张图; 这张图上有一些边的权值未知; 让你确定这些权值(改成一个正整数) 使 ...

  5. CodeForces 715B Complete The Graph 特殊的dijkstra

    Complete The Graph 题解: 比较特殊的dij的题目. dis[x][y] 代表的是用了x条特殊边, y点的距离是多少. 然后我们通过dij更新dis数组. 然后在跑的时候,把特殊边都 ...

  6. CF715B. Complete The Graph

    CF715B. Complete The Graph 题意: 给一张 n 个点,m 条边的无向图,要求设定一些边的边权 使得所有边权都是正整数,最终 S 到 T 的最短路为 L 1 ≤ n ≤ 100 ...

  7. 算法:图(Graph)的遍历、最小生成树和拓扑排序

    背景 不同的数据结构有不同的用途,像:数组.链表.队列.栈多数是用来做为基本的工具使用,二叉树多用来作为已排序元素列表的存储,B 树用在存储中,本文介绍的 Graph 多数是为了解决现实问题(说到底, ...

  8. 译:Local Spectral Graph Convolution for Point Set Feature Learning-用于点集特征学习的局部谱图卷积

    标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem ...

  9. Codeforces 715B. Complete The Graph 最短路,Dijkstra,构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF715B.html 题解 接下来说的“边”都指代“边权未知的边”. 将所有边都设为 L+1,如果dis(S,T ...

随机推荐

  1. 第11章 Windows线程池(3)_私有的线程池

    11.3 私有的线程池 11.3.1 创建和销毁私有的线程池 (1)进程默认线程池 当调用CreateThreadpoolwork.CreateThreadpoolTimer.CreateThread ...

  2. NGUI 3.x 练习

    一.常用快捷键 Alt+Shitf+W 创建一个新的 Widget Alt+Shift+S 创建一个新的 Sprite Alt+Shift+L 创建一个新的 Label Alt+Shift+T 创建一 ...

  3. Socket Programming in C#--Server Side

    Server Side If you have understood whatever I have described so far, you will easily understand the ...

  4. Linux Linux程序练习十二(select实现QQ群聊)

    //头文件--helper.h #ifndef _vzhang #define _vzhang #ifdef __cplusplus extern "C" { #endif #de ...

  5. MySQL基础 - 内置函数

    Concat() 用于连接字段,一般DBMS使用+或者||. ex: 注意:上图中新检索出来的列名为'CONCAT(id, '->', name)'(实际上没有列名),这样虽然不影响在MySQL ...

  6. 在C#代码中应用Log4Net 中配置文件的解释

    一个完整的配置文件的例子如下所示,这个是”在C#代码中应用Log4Net(二)”中使用的配置文件. <log4net> <!-- 错误日志类--> <logger nam ...

  7. TinyFrame升级之二:数据底层访问部分

    在上一篇中,我列举了框架的整体结构,下面我们将一一说明: 首先需要说明的是TinyFrame.Data. 它主要用于处理数据库底层操作.包含EF CodeFirst,Repository,Unitof ...

  8. 修改TrustedInstaller权限文件(无法删除文件)

    1.    右击需要修改的文件-属性 2.    切换到"安全"选项卡,点击"高级"按钮. 3.    切换到"所有者"选项卡 一般情况下默 ...

  9. windows下git bash显示中文

    1.C:\Program Files\Git\etc\git-completion.bash: alias ls='ls --show-control-chars --color=auto' 说明:使 ...

  10. jQuery问题:$XXX is not a function

    用火狐浏览器打开,js代码一段不执行,F12以后看见下面的错误: 网上查看说是jQuery文件引用的问题,把jQuery.js引入语句修改了一下,果然没有错了. 我原来的引用语句是:<scrip ...