HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4010
题意;
先给你一棵树,有 \(4\) 种操作:
1、如果 \(x\) 和 \(y\) 不在同一棵树上则在\(x-y\)连边.
2、如果 \(x\) 和 \(y\) 在同一棵树上并且 \(x!=y\) 则把 \(x\) 换为树根并把 \(y\) 和 \(y\) 的父亲分离.
3、如果 \(x\) 和 \(y\) 在同一棵树上则 \(x\) 到 \(y\) 的路径上所有的点权值\(+w\).
4、如果 \(x\) 和 \(y\) 在同一棵树上则输出 \(x\) 到 \(y\) 路径上的最大值.
题解:
需要支持连边和删边等操作的,一般是动态树。
先把初始化的树建好,再套个 \(LCT\) 就可以了。可以说很裸了....但要注意题目中的一些细节。然而我还是调了挺久的...
\(LCT\) 的基本操作复杂度均摊是\(O(log^2n)\),不过常数可能大一点。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
// 动态树问题,即要求我们维护一个由若干棵子结点无序的有根树组成的森林的连通性问题。
// 要求这个数据结构支持对树的分割、合并,对某个点到它到根的路径的某些操作
// LCT的基本操作复杂度为均摊O(log^2n).
// http://acm.hdu.edu.cn/showproblem.php?pid=4010
const int N = 300100;
int n,m,val[N];
struct Link_Cut_Tree
{
int top,son[N][2],fa[N],q[N],rev[N];
int NodeVal[N]; // 每个点的权值
int MAX[N];
int ADD[N];
void init()
{
for(int i=0;i<=n;i++) {
son[i][0] = son[i][1] = 0;
}
top = 0;
memset(son,0,sizeof(son));
memset(fa,0,sizeof(fa));
memset(q,0,sizeof(q));
memset(rev,0,sizeof(rev));
memset(NodeVal,0,sizeof(NodeVal));
memset(MAX,0,sizeof(MAX));
memset(ADD,0,sizeof(ADD));
}
inline void pushup(int x) //上传Splay的最大值
{
MAX[x] = max(MAX[son[x][0]],MAX[son[x][1]]);
MAX[x] = max(MAX[x],NodeVal[x]);
}
void add(int x, int v)
{
NodeVal[x] += v;
MAX[x] += v;
ADD[x] += v;
}
inline void pushdown(int x) //下放Splay的翻转标记
{
int l=son[x][0],r=son[x][1];
if(rev[x]){
rev[l]^=1;rev[r]^=1;rev[x]^=1;
swap(son[x][0],son[x][1]);
}
if(ADD[x])
{
if(son[x][0]) {
add(son[x][0],ADD[x]);
}
if(son[x][1]) {
add(son[x][1],ADD[x]);
}
ADD[x] = 0;
}
}
// 判断这是不是一条重路径的根,只要他的fa指针指向的节点的左右子树都不是他,
// 证明此时这是一条虚边那么这就是一棵子树的根节点
inline bool isroot(int x) {
return !fa[x] || (son[fa[x]][0]!=x && son[fa[x]][1]!=x);
}
void rotate(int x) {
int y=fa[x],z=fa[y],l,r;
if(son[y][0]==x)l=0;
else l=1;
r=l^1;
if(!isroot(y)) {
if(son[z][0]==y) son[z][0]=x;
else son[z][1]=x;
}
fa[x]=z; fa[y]=x;
fa[son[x][r]]=y;
son[y][l]=son[x][r]; son[x][r]=y;
pushup(y); pushup(x);
}
// 提根
void splay(int x) {
top=1;q[top]=x;
for(int i=x;!isroot(i);i=fa[i]) q[++top]=fa[i];
for(int i=top;i;i--) pushdown(q[i]);
while(!isroot(x)) {
int y=fa[x],z=fa[y];
if(!isroot(y)) {
if((son[y][0]==x)^(son[z][0]==y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
// LCT核心:从当前的节点x向它所在的根节点连一条重路径,相当于把沿路的重路径全都断开,重新拉一条从x到根的重路径
void access(int x) {
for(int t=0;x;t=x,x=fa[x]) {
splay(x);
son[x][1]=t;
pushup(x);
}
}
//换根:让 x 成为当前树的根节点
void makeroot(int x) {
access(x);
splay(x);
rev[x]^=1;
}
// 先找到 x 所在的 auxiliary tree(即preferred path),并查找返回该条路径最小的节点(即根)
int find_root(int x) {
access(x);
splay(x);
while(son[x][0]) x=son[x][0];
return x;
}
//获取到 x−y所对应的路径,可以通过访问y节点来获取到有关路径的信息
void split(int x,int y) {
makeroot(x);
access(y);
splay(y);
}
// 断开 x 和 y 之间的边
void cut(int x,int y) {
split(x,y);
// if(son[y][0]==x && son[x][1]==0)
// {
// son[y][0]=0, fa[x]=0;
// pushup(y);
// }
fa[son[y][0]]=0;son[y][0]=0;
pushup(y);
}
// 在 x 和 y 之间连边
void link(int x,int y) {
makeroot(x);
// 注意有些题不保证x,y未联通,还需要判断一下联通性
// if(find_root(y)==x) return; //两点已经在同一子树中,再连边不合法
fa[x]=y;
}
// 将x-y路径上的权值都加 w
void add_val(int x,int y,int w)
{
split(x,y);
add(y,w);
}
// 输出x-y之间的最大点权
int query(int x, int y)
{
split(x,y);
return MAX[y];
}
}LCT;
std::vector<int> ve[N];
void dfs(int u, int fa)
{
LCT.fa[u] = fa;
for(int i = 0; i < (int)ve[u].size(); i++){
int v = ve[u][i];
if(v == fa)continue;
dfs(v,u);
}
}
int main(int argc, char const *argv[]) {
// freopen("in.txt","r",stdin);
while(std::cin >> n) {
memset(val,0,sizeof(val));
for(int i = 0; i <= n; i++) ve[i].clear();
LCT.init();
for(int i = 1; i < n; i++) {
int u,v;
scanf("%d%d",&u,&v);
// LCT.link(u,v);
ve[u].push_back(v);
ve[v].push_back(u);
}
dfs(1,0);
for(int i = 1; i <= n; i++) {
int x;
scanf("%d", &x);
LCT.NodeVal[i] = x;
LCT.MAX[i] = x;
}
std::cin >> m;
for(int i = 1; i <= m; i++) {
int op, x, y;
scanf("%d", &op);
// 连接x到 y,若x到 y已经联通则无需连接
if(op == 1) {
scanf("%d%d",&x,&y);
int xx = LCT.find_root(x), yy = LCT.find_root(y);
if(xx != yy) LCT.link(x,y);
else {
puts("-1");
}
}
// 删除边(x,y),但不保证边(x,y)存在
else if(op == 2)
{
scanf("%d%d",&x,&y);
int xx = LCT.find_root(x), yy = LCT.find_root(y);
if(xx == yy && x != y) LCT.cut(x,y);
else {
puts("-1");
}
}
// 将x-y路径上的权值都加 w
else if(op == 3) {
int w;
scanf("%d%d%d",&w,&x,&y);
// std::cout << "w = " << w << '\n';
if(LCT.find_root(x) == LCT.find_root(y)) LCT.add_val(x,y,w);
else puts("-1");
}
// 输出x-y之间的最大点权
else if(op == 4) {
scanf("%d%d",&x,&y);
if(LCT.find_root(x) == LCT.find_root(y)) printf("%d\n",LCT.query(x,y));
else {
puts("-1");
}
}
}
puts("");
}
return 0;
}
HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)的更多相关文章
- HDU 4010 Query on The Trees(动态树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意:一棵树,四种操作: (1)若x和y不在一棵树上,将x和y连边: (2)若x和y在一棵树上, ...
- 动态树(Link Cut Tree) :SPOJ 375 Query on a tree
QTREE - Query on a tree #number-theory You are given a tree (an acyclic undirected connected graph) ...
- 动态树(LCT):HDU 4010 Query on The Trees
Query on The Trees Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Othe ...
- HDU 4010.Query on The Trees 解题报告
题意: 给出一颗树,有4种操作: 1.如果x和y不在同一棵树上则在xy连边 2.如果x和y在同一棵树上并且x!=y则把x换为树根并把y和y的父亲分离 3.如果x和y在同一棵树上则x到y的路径上所有的点 ...
- HDU 4010 Query on The Trees(动态树LCT)
Problem Description We have met so many problems on the tree, so today we will have a query problem ...
- HDU 4010 Query on The Trees(动态树)
题意 给定一棵 \(n\) 个节点的树,每个点有点权.完成 \(m\) 个操作,操作四两种,连接 \((x,y)\) :提 \(x\) 为根,并断 \(y\) 与它的父节点:增加路径 \((x,y)\ ...
- HDU 4010 Query on The Trees
Problem Description We have met so many problems on the tree, so today we will have a query problem ...
- hdu 4010 Query on The Trees LCT
支持:1.添加边 x,y2.删边 x,y3.对于路径x,y上的所有节点的值加上w4.询问路径x,y上的所有节点的最大权值 分析:裸的lct...rev忘了清零死循环了两小时... 1:就是link操作 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- An internal error occurred during: "Checking tomcat state". Error while reading server.xml
An internal error occurred during: "Checking tomcat state". Error while reading server.xml ...
- .Net 路由处理厉害了
通过设置路由,可以灵活的显示地址内容.它会自动转换为想要的控制器和方法中去. using System; using System.Collections.Generic; using System. ...
- node.js操作Cookie
node.js操作Cookie http://www.tuicool.com/articles/F3UF7n
- Centos7 ssh免密码登陆
摘要:安装openssl openssl-devel 不过有些centos自带 192.168.161.5 192.168.161.15 本版本用centos7 (192.168.161.5) yu ...
- vue --- axios发post请求后台接收不到参数的三种解决方案
最近用vue 做项目使用axios 发送post 请求时遇到了前端传数据后端接收不到的情况: 后来仔细对比发现axios传值是这样的: 而 ajax 传值是这样的: 一个 Request Paylo ...
- linux sed命令详解 --大量举例
1. Sed简介 sed 是一种在线编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后 ...
- Mybatis mapper.xml文件头文件备份
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-/ ...
- Java程序猿的JavaScript学习笔记(6——面向对象模拟)
计划按例如以下顺序完毕这篇笔记: Java程序猿的JavaScript学习笔记(1--理念) Java程序猿的JavaScript学习笔记(2--属性复制和继承) Java程序猿的JavaScript ...
- HDOJ 5419 Victor and Toys 树状数组
分母是一定的C(m,3) 树状数组求每一个数能够在那些段中出现,若x出如今了s段中,分子加上w[x]*C(s,3) Victor and Toys Time Limit: 2000/1000 MS ( ...
- vim 基础学习之插入模式
插入模式1.字符编码,插入特殊字符 <C-v>{3位} 如,你想输入A,你可以在输入模式下<C-v>065(必须是3位) <C-v>u{4位} 如,你想输入¿,你可 ...