题目背景

有如下一个双人游戏:N(2 <= N <= 100)个正整数的序列放在一个游戏平台上,游戏由玩家1开始,两人轮流从序列的任意一端取一个数,取数后该数字被去掉并累加到本玩家的得分中,当数取尽时,游戏结束。以最终得分多者为胜。

题目描述

编一个执行最优策略的程序,最优策略就是使玩家在与最好的对手对弈时,能得到的在当前情况下最大的可能的总分的策略。你的程序要始终为第二位玩家执行最优策略。

输入输出格式

输入格式:

第一行: 正整数N, 表示序列中正整数的个数。

第二行至末尾: 用空格分隔的N个正整数(大小为1-200)。

输出格式:

只有一行,用空格分隔的两个整数: 依次为玩家一和玩家二最终的得分。

输入输出样例

输入样例#1:

6
4 7 2 9 5 2
输出样例#1:

18 11

说明

题目翻译来自NOCOW。

USACO Training Section 3.3

思路:

经典的区间型动态规划的题。

状态只有2种:从左边拿和从右边拿。

假设当前状态a1,a2,a3,a4,a5,如果第一个人选最左边的,则问题转化为四个数a2,a3,a4,a5,然后第二个人先选,由于题目说第二个人方案也最优,所以选的也是最优方案,即f[i+1][j];先选右边同理。

f[i][j]表示i~j区间段第一个人选的最优方案。

所以dp转移方程为:f[i][j]=max{ sum[i+1][j]-f[i+1][j]+ai,sum[i][j-1]-f[i][j-1]+aj }

sum[i][j]其实就等于sum[1][j]-sum[1][i-1],于是我们用一个s数组,s[i]表示前1~i个数的和,就好了。

所以dp转移方程也可写成f[i][j]=max((s[j]-s[i-1])-f[i+1][j],(s[j]-s[i-1])-f[i][j-1]);

根据dp转移方程我们可以发现,要得到状态f[i][j],必须要得到状态f[i+1][j]和f[i][j-1]。然后我们就可以写出程序了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,w[],s[],f[][];
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&w[i]);
s[i]=s[i-]+w[i];
f[i][i]=w[i];
}
for(int i=n;i>=;i--)
for(int j=i+;j<=n;j++)
f[i][j]=max((s[j]-s[i-])-f[i+][j],(s[j]-s[i-])-f[i][j-]);
cout<<f[][n]<<" "<<s[n]-f[][n];
}

洛谷 P2734 游戏 A Game的更多相关文章

  1. 洛谷P2734 游戏 A Game

    P2734 游戏 A Game 27通过 60提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交  讨论  题解 最新讨论 暂时没有讨论 题目背景 有如下一个双人游戏:N(2 < ...

  2. 洛谷——P2734 游戏 A Game

    P2734 游戏 A Game 题目背景 有如下一个双人游戏:N(2 <= N <= 100)个正整数的序列放在一个游戏平台上,游戏由玩家1开始,两人轮流从序列的任意一端取一个数,取数后该 ...

  3. 题解——洛谷P2734 游戏A Game 题解(区间DP)

    题面 题目背景 有如下一个双人游戏:N(2 <= N <= 100)个正整数的序列放在一个游戏平台上,游戏由玩家1开始,两人轮流从序列的任意一端取一个数,取数后该数字被去掉并累加到本玩家的 ...

  4. 洛谷 [P2734] 游戏

    博弈论+区间dp 有博弈论吗?大约只有一个博弈论的壳子 设 dp[i][j] 表示区间 i ~ j 先手最多能取多少, 它可以由 i ~ j - 1 与 i + 1 ~ j 来转移, 等于上述两个区间 ...

  5. 洛谷 [P2825] 游戏

    二分图匹配的匈牙利算法 这道题,如果没有硬石头的限制,那么就与ZJOI 2007矩阵游戏完全一样,但是如果有了硬石头的限制,我们就不能将整行整列作为元素建图,我们可以以硬石头为边界,将每一行.每一列分 ...

  6. 【题解】 洛谷 P2649 游戏预言

    题目: P2649 游戏预言 题意: John和他的好朋基友们在van纸牌游戏.共有\(m\)个人.纸牌有\(n \times m\)张,从\(1--n \times m\)编号.每人有\(n\)张. ...

  7. 洛谷P4436 游戏 [HNOI/AHOI2018]

    正解:拓扑排序 解题报告: 传送门! 首先不难想到可以把麻油锁的一段先直接缩成一个点,然后预处理每个点能到达的最左和最右节点,然后就能O(1)地查询辣 所以难点在于预处理 可以想到,对于它给定的关于锁 ...

  8. SG函数模板(洛谷2197nim游戏

    #include <iostream> #include <cstdio> #include <queue> #include <algorithm> ...

  9. 洛谷P1118 数字三角形游戏

    洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直 ...

随机推荐

  1. [caffe]网络各层参数设置

    数据层 数据层是模型最底层,提供提供数据输入和数据从Blobs转换成别的格式进行保存输出,通常数据预处理(减去均值,放大缩小,裁剪和镜像等)也在这一层设置参数实现. 参数设置: name: 名称 ty ...

  2. tensorflow之tf.slice()

    转载:https://www.jianshu.com/p/71e6ef6c121b https://www.cnblogs.com/chamie/p/11073363.html def slice(i ...

  3. myeclipse 字体设置为UTF-8

    将myeclipse设置成utf-8格式的方式如下: 1.windows->Preferences打开"首选项"对话框,如图: 2.点击左侧导航树,导航到general-&g ...

  4. 修改Myeclies作者用户名

    首先点击 windos 点击 preferences 依次点击左侧 Java -> Code Style -> Code Templates 击右侧Comments,将其中的Types项, ...

  5. Hdu 1429 胜利大逃亡(续) (bfs+状态压缩)

    这道题的钥匙只有10个,可以压成二进制 这里有有句非常关键的话 (k & door[x][y]) == door[x][y] 一开始以为只要(k & door[x][y]) ==1就可 ...

  6. Spring Security中的MD5盐值加密

    在 spring Security 文档中有这么一句话: "盐值的原理非常简单,就是先把密码和盐值指定的内容合并在一起,再使用md5对合并后的内容进行演算,这样一来,就算密码是一个很常见的字 ...

  7. 不用while if 循环求 1到n的和,还用到了!!这样的运算符

    很好的题目.开始我也没有想出来. 不用while if 循环求 1到n的和 给了很多种解法,第一种是构造函数,然后累加static变量 第二种是虚函数,有父类子类,父类的结束,然后用 !!n来让 n不 ...

  8. [Hyperapp] Interact with the State Object through Hyperapp Action functions

    Hyperapp is an ultra lightweight (1kb), minimal, functional, JavaScript library for building UIs. It ...

  9. pip安装selenium时提示Unknown or unsupported command 'install'

    安装流程: 1.安装Python34 2.安装pip 下载setuptoos并安装,然后输入:easy_install pip 然后 配置path:C:\Python34\Scripts 3安装sel ...

  10. mybatis学习笔记(7)-输出映射

    mybatis学习笔记(7)-输出映射 标签: mybatis mybatis学习笔记7-输出映射 resultType 输出简单类型 输出pojo对象和pojo列表 resultMap result ...