算法87-----DAG有向无环图的拓扑排序
一、题目:课程排表---210
课程表上有一些课,是必须有修学分的先后顺序的,必须要求在上完某些课的情况下才能上下一门。问是否有方案修完所有的课程?如果有的话请返回其中一个符合要求的路径,否则返回[].
例子1:
Input: 2, [[1,0]]
Output: [0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished
course 0. So the correct course order is [0,1].
例子2:
Input: 4, [[1,0],[2,0],[3,1],[3,2]]
Output: [0,1,2,3] or [0,2,1,3]
Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both
courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3] .
BFS思路:每次找入度为0的节点。
1、先建立图(邻接表)、和入度表。
2、循环n次(n为节点数),每次找到度为0 的节点(循环n次,从头开始找),加入path中,然后将其出度的节点的入度-=1(循环入度表)。
先是找到入度为0的节点:1 将1加入path中,然后是2,3节点的入度减去1,因为1已经被处理掉了。 此时度为0的节点是2,3。 将2,3加入path中,…… |
![]() |
伪代码:
循环n次:
循环n次:
找入度为0的节点
将度为0节点加入path中
循环入度表:
将度为0节点的出度节点的入度节点-=1
代码:
from collections import defaultdict
def BFS(n,arr):
# n 为节点数,arr为【【u1,v1】,【u2,v2】……】,这里的u和v中,v是u的父节点。
if not arr:
return -1
graph = defaultdict(list)
indegree = defaultdict(int)
path = []
for u , v in arr:
graph[v].append(u)
indegree[u] += 1
for i in range(n):
zeroDegree = False
for j in range(n):
if indegree[j] == 0:
zeroDegree = True
break
if not zeroDegree:
return []
indegree[j] -= 1
path.append(j)
for val in graph[j]:
indegree[val] -= 1
return path
n= 5
arr = [[1,0],[2,0],[3,1],[3,2],[4,0]]
print(BFS(n,arr))
DFS思路:递归
1、建立图
2、循环n次,每次是遍历一个节点是否已经visited且合法地加入path中了,如果False不合法则直接返回【】。
3、遍历一个节点时会将其后面的所有子节点都处理掉。
如,先是1,将1进行dfs处理【path中加入1,2,4,8,5】 然后是2,将2进行dfs处理,已经visited过了,继续循环 然后是3,将3进行dfs处理,没有visited,unkown状态,【path=【1,2,4,8,5】中加入【3,6,7】】 然后是4……,后面都是visited过的,都直接跳过。 |
![]() |
代码:
from collections import defaultdict
def findPath(n,arr):
if n == 0:
return []
graph = defaultdict(list)
for u , v in arr:
graph[v].append(u)
# 0为Unkown,1为visiting,2为visited
path = []
visited = [0] * n
for i in range(n):
if not DFS(graph,visited,path,i):
return []
return path
def DFS(graph,visited,path,i):
####i节点:其正在遍历,但它的子节点的子节点也是它,表示产生了有环,则return FALSE
if visited[i] == 1: return False
####i节点 :已经遍历过,后面已经没有节点了,return true
elif visited[i] == 2:return True
####表示正在遍历i节点
visited[i] = 1
for j in graph[i]:
if not DFS(graph,visited,path,j):
return False
path.append(i)
visited[i] = 2
return True n = 5
arr = [[1,0],[2,0],[3,1],[3,2],[4,0]]
print(findPath(n,arr))
二、题目二:课表安排【判断拓扑排序有无环】
现在你总共有 n 门课需要选,记为 0
到 n-1
。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?
示例 1:
输入: 2, [[1,0]]
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。
示例 2:
输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
说明:
- 输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法。
- 你可以假定输入的先决条件中没有重复的边。
提示:
- 这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
- 通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
拓扑排序也可以通过 BFS 完成。
代码:
from collections import defaultdict
class Solution(object):
def canFinish(self, numCourses, prerequisites):
"""
:type numCourses: int
:type prerequisites: List[List[int]]
:rtype: bool
"""
if numCourses == 0:
return False
if len(prerequisites) == 0 or len(prerequisites) <= 1:
return True graph = defaultdict(list)
indegree = defaultdict(int)
for u , v in prerequisites:
graph[v].append(u)
indegree[u] += 1
###BFS,判断是否是拓扑排序
def BFS(n,graph,indegree,j):
zerodegree = False
for i in range(n):
if indegree[i] == 0:
zerodegree = True
break
if not zerodegree:
return False
indegree[i] -= 1
for k in graph[i]:
indegree[k] -= 1
return True
for j in range(numCourses):
if not BFS(numCourses,graph,indegree,j):
return False
return True
算法87-----DAG有向无环图的拓扑排序的更多相关文章
- CSU 1804: 有向无环图(拓扑排序)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在 ...
- [转帖]算法精解:DAG有向无环图
算法精解:DAG有向无环图 https://www.cnblogs.com/Evsward/p/dag.html DAG是公认的下一代区块链的标志.本文从算法基础去研究分析DAG算法,以及它是如何运用 ...
- JavaScript + SVG实现Web前端WorkFlow工作流DAG有向无环图
一.效果图展示及说明 (图一) (图二) 附注说明: 1. 图例都是DAG有向无环图的展现效果.两张图的区别为第二张图包含了多个分段关系.放置展示图片效果主要是为了说明该例子支持多段关系的展现(当前也 ...
- 算法精解:DAG有向无环图
DAG是公认的下一代区块链的标志.本文从算法基础去研究分析DAG算法,以及它是如何运用到区块链中,解决了当前区块链的哪些问题. 关键字:DAG,有向无环图,算法,背包,深度优先搜索,栈,BlockCh ...
- Python 随即生成DAG(有向无环图)
给校队选拔赛出了道DAG上的背包问题,需要生成DAG数据. 最开始使用的方法是先随机生成再判环,如果有环就重新生成.这种方法得到DAG的概率随着点数和边数的增加而急速降低,为了一个DAG要生成很多次, ...
- pagerank算法在数学模型中的运用(有向无环图中节点排序)
一.模型介绍 pagerank算法主要是根据网页中被链接数用来给网页进行重要性排名. 1.1模型解释 模型核心: a. 如果多个网页指向某个网页A,则网页A的排名较高. b. 如果排名高A的网页指向某 ...
- 题目1448:Legal or Not(有向无环图判断——拓扑排序问题)
题目链接:http://ac.jobdu.com/problem.php?pid=1448 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...
- 图->有向无环图->拓扑排序
文字描述 关于有向无环图的基础定义: 一个无环的有向图称为有向无环图,简称DAG图(directed acycline graph).DAG图是一类较有向树更一般的特殊有向图. 举个例子说明有向无环图 ...
- [转帖]MerkleDAG全面解析 一文读懂什么是默克尔有向无环图
MerkleDAG全面解析 一文读懂什么是默克尔有向无环图 2018-08-16 15:58区块链/技术 MerkleDAG作为IPFS的核心数据结构,它融合了Merkle Tree和DAG的优点,今 ...
随机推荐
- 百度地图API位置偏移的校准算法
转自极客人原文 百度地图API位置偏移的校准算法 在开始使用百度地图API进行开发时可能会遇到一件相当奇怪的事情,使用百度定位的经纬度在地图上显示相当不准确,这一问题我在微信开发和安卓开始时都遇到过. ...
- zookeeper协调技术
本文转自http://www.cnblogs.com/wuxl360/p/5817471.html 感谢作者 一.分布式协调技术 在给大家介绍ZooKeeper之前先来给大家介绍一种技术——分布式协调 ...
- poj 1635
有根树同构.参考论文<hash在....> #include <iostream> #include <fstream> #include <algorith ...
- 微信 创建自定义菜单 向微信发起的post请求
微信 创建自定义菜单 向微信发起的post请求 Map<String, Object> res = new HashMap<String, Object>(); try { S ...
- Android面试准备 第一天 第2-4例
參考:http://blog.csdn.net/lmj623565791/article/details/24015867. .假设有个100M大的文件.须要上传至server中.而serverfor ...
- hive学习路线
hive学习路线图:
- bzoj4397【Usaco2015 Dec】Breed Counting
4397: [Usaco2015 dec]Breed Counting Time Limit: 10 Sec Memory Limit: 128 MB Submit: 29 Solved: 25 ...
- java.lang.IllegalStateException: Can not perform this action after onSaveInstanceState问题解决
(1)我用的是fragment,在onStop但是没有onDestroy的情况下切换(replace)fragment时报 java.lang.IllegalStateException: Can n ...
- 使用playonlinux安装windows软件
转载 http://qspy.is-programmer.com/posts/40913.html Wine提供了一个用来运行Windows程序的平台.PlayOnLinux 是使用 Python 写 ...
- PCB SLOT槽孔数量计算方法,同CAM350孔数一致 实现方法
最近有好几个写脚本的朋友问我,SLOT槽孔孔的如何计算的,要求孔数与CAM350孔数保持一致. 前几年通过在CAM350里面不断测试,结果是:CAM 350中SLOT槽孔,孔与孔之间最高位,凸位高度值 ...