#include<bits/stdc++.h>
using namespace std;
long long a,b,x,y,ans,tmp;
inline void ex_gcd(long long a,long long b,long long &x,long long &y){
if(!b){
x = 1;
y = 0;
return;
}
ex_gcd(b,a%b,y,x);
y -= (a/b)*x;
}
int main(){
cin>>a>>b;
ex_gcd(a,b,x,y);
if(x > 0)swap(a,b),swap(x,y);
tmp = (-x)/b;
x = x+tmp*b;
y = y-tmp*a;
while(x < 0)x += b,y -= a;
while(x > 0)x -= b,y += a;
tmp = x+b;
ans = a*(tmp-1)+b*(y-1);
cout<<ans-1<<endl;
return 0;
}

  还有特别巨小伙伴直接用

#include<bits/stdc++.h>
using namespace std;
long long a,b,ans,sum,t;
int main(){
scanf("%lld %lld",&a,&b);
if (a>b)swap(a,b);
t=(a-1)*b/a-1;
sum=(sum+(a-1)*b)%a;
printf("%lld",t*a+sum);
return 0;
}

  

[NOIP2017提高组]小凯的疑惑-扩展欧几里得的更多相关文章

  1. [NOIp2017提高组]小凯的疑惑

    题目大意: 给你两个数a,b,保证a与b互质,求最大的x满足不能被表示成若干个a与b的和. 思路: 据说是小学奥数题. 考场上先写了个a*b的60分DP,然后打表发现答案就是(a-1)*(b-1)-1 ...

  2. 【NOIP2017 D1 T1 小凯的疑惑】

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  3. NOIP2017 Day1 T1 小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小凯想知道在无法准确支付的物品中,最贵的价 ...

  4. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  5. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  6. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  7. 【题解】NOIP2017 提高组 简要题解

    [题解]NOIP2017 提高组 简要题解 小凯的疑惑(数论) 不讲 时间复杂度 大力模拟 奶酪 并查集模板题 宝藏 最优解一定存在一种构造方法是按照深度一步步生成所有的联通性. 枚举一个根,随后设\ ...

  8. [SinGuLaRiTy] NOIP2017 提高组

    [SinGuLaRiTy-1048] Copyright (c) SinGuLaRiTy 2018. All Rights Reserved. NOIP2017过了这么久,现在2018了才找到寒假这么 ...

  9. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

随机推荐

  1. newCachedThreadPool 的使用

    newCachedThreadPool的线程池特点: (1)它是一个可以无限扩大的线程池:它比较适合处理执行时间比较小的任务:corePoolSize为0,maximumPoolSize为无限大,意味 ...

  2. C语言函数-socket

    int sock = socket(AF_INET, SOCK_STREAM, 0) //建立一个流式套接字,stream是流的意思,Tcp连接,提供序列化的.可靠的.双向连接的字节流.支持带外数据传 ...

  3. 红米Note 4X详细刷成开发版开启ROOT超级权限的教程

    小米的手机不同手机型号正常情况下官方网站都提供两个不同的版本,大概分为稳定版和开发版,稳定版没有提供Root超级权限管理,开发版中就开启了Root超级权限,很多情况我们需要使用的一些功能强大的app, ...

  4. docker 笔记

     批量删除Docker中已经停止的容器[转] 方法一: #显示所有的容器,过滤出Exited状态的容器,取出这些容器的ID, sudo docker ps -a|grep Exited|awk '{p ...

  5. layui table默认选中指定行

    表格默认选中行,在回调里写入 done: function (res, curr, count) { tableData = res.data; $("[data-field='id']&q ...

  6. Python神器 Jupyter Notebook

    什么是Jupyter Notebook? 简介 Jupyter Notebook是基于网页的用于交互计算的应用程序.其可被应用于全过程计算:开发.文档编写.运行代码和展示结果. Jupyter Not ...

  7. 「快速傅里叶变换(FFT)」学习笔记

    FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...

  8. [BJOI2019]删数(线段树)

    [BJOI2019]删数(线段树) 题面 洛谷 题解 按照值域我们把每个数的出现次数画成一根根的柱子,然后把柱子向左推导,\([1,n]\)中未被覆盖的区间长度就是答案. 于是问题变成了单点修改值,即 ...

  9. openflow控制器和交换机之间的消息

    openflow控制器和交换机之间的消息 消息格式 openflow消息由64bit,8个字节组成 Openflow协议数据包由Openflow Header和Openflow Message两部分组 ...

  10. 几道c/c++练习题

    1.以下三条输出语句分别输出什么?[C易] char str1[] = "abc"; char str2[] = "abc"; const char str3[ ...