在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0.  \eex$$

证明:

(1)  写出 $$\beex \bea \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl} &=\sum_{i,j,k,l}\sez{ \lm \delta_{ij}\delta_{kl} +\mu\sex{ \delta_{ik}\delta_{jl} +\delta_{il}\delta_{jk} }}e_{ij}e_{kl}\\ &=\lm \sum_ie_{ii}\sum_ke_{kk} +\mu\sum_{ij}e_{ij}e_{ij} +\mu\sum_{ij}e_{ij}e_{ji}\\ &=\lm\sex{\sum_ie_{ii}}^2 +2\mu\sum_{i,j}e_{ij}^2.  \eea \eeex$$

(2)  若 $\lm>0$, 则 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}\geq 2\mu|{\bf E}|^2; \eex$$ 若 $\lm<0$, 则 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}\geq 3\lm\sum_ie_{ii}^2+2\mu\sum_{i,j}e_{ij}^2 \geq (2\mu+3\lm)|{\bf E}|^2.  \eex$$

(3)  $\ra$: 取 ${\bf E}=\sex{\ba{ccc} 0&1&0\\ 1&0&0\\ 0&0&0 \ea}$, 有 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}=4\mu>0; \eex$$ 取 ${\bf E}=\sex{\ba{ccc} 1&0&0\\ 0&1&0\\ 0&0&1 \ea}$, 有 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}=9\lm+6\mu>0.  \eex$$

[物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件的更多相关文章

  1. [物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件

    在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$ 证明: (1) ...

  2. [物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达

    设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式. 证明: 若贮能函数 $W$ 满足 ...

  3. [物理学与PDEs]第2章习题1 无旋时的 Euler 方程

    试证明: 当流场为无旋, 即 $\rot{\bf u}={\bf 0}$ 时, 理想流体的 Euler 方程可写为如下形式: $$\bex \cfrac{\p {\bf u}}{\p t}+\n \c ...

  4. [物理学与PDEs]第1章习题11 各向同性导体中电荷分布的指数衰减

    在各向同性的导体中, Ohm 定律具有如下形式: $$\bex {\bf j}=\sigma {\bf E}, \eex$$ 其中 $\sigma$ 称为电导率. 试证在真空中导体的连续性方程为 $$ ...

  5. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  6. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  7. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  8. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  9. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

随机推荐

  1. 有效的字母异位词的golang实现

    给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的一个字母异位词. 输入: s = "anagram", t = "nagaram" 输出: ...

  2. 周末班:Python基础之函数进阶

    迭代器和生成器 迭代和可迭代 什么是迭代(iteration)? 如果给定一个list或tuple,我们要想访问其中的某个元素,我们可以通过下标来,如果我们想要访问所有的元素,那我们可以用for循环来 ...

  3. c# 日期函数DateTime.ToString()日期的各种格式

    //c# datetime 格式化 DateTime dt = DateTime.Now; //2017/11/14 10:46:56 label1.Text = dt.ToString();//20 ...

  4. Topshelf:一款非常好用的 Windows 服务开发框架

    背景 多数系统都会涉及到“后台服务”的开发,一般是为了调度一些自动执行的任务或从队列中消费一些消息,开发 windows service 有一点不爽的是:调试麻烦,当然你还需要知道 windows s ...

  5. python中的闭包和装饰器

    重新学习完了函数,是时候将其中的一些重点重新捋一捋了,本次总结的东西只有闭包和装饰器 1.闭包 闭包是python函数中的一个比较重要功能,一般闭包都是用在装饰器上,一般学完闭包就会去学习装饰器,这俩 ...

  6. 【转】Android辅助功能AccessibilityService自动全选择文字粘贴模拟输入

    网上找了很久AccessibilityService全选文字的方法,一直没找到,自己研究了半天,分享出来. /** * 输入文本 */ public void inputText(List<St ...

  7. CentOS 7 minimal配置网络连接及net-tools安装

    在Virtual Box中安装好CentOS 7的minimal后,第一件事就是设置网络访问. 首先需要用 nmtui 命令进入 Network Manager,如下: 选择 Edit a conne ...

  8. Sublime 禁止自动升级

    打开SUblime   Prefreences  找到"设置-用户" 添加 "update_check":false, 即可禁用默认升级 此时完整如下 { &q ...

  9. 如何将多个C文件链接在一起----Makefile编写及make指令

    需使用GCC编译器,关于MinGW的安装指南:https://people.eng.unimelb.edu.au/ammoffat/teaching/20005/Install-MinGW.pdf 单 ...

  10. PS图片后期之超简易造光调色方法

    技法是死的,而人是活的,说的简单一点就是我们要学会开拓一下思维,调色的方法并不是只有[可选颜色]而已. 在修片之前,我们先要学会分析,在拍摄这一组照片时我希望有一种夕阳的光穿透晒在脸庞的感觉,而左边的 ...