[物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件
在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0. \eex$$
证明:
(1) 写出 $$\beex \bea \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl} &=\sum_{i,j,k,l}\sez{ \lm \delta_{ij}\delta_{kl} +\mu\sex{ \delta_{ik}\delta_{jl} +\delta_{il}\delta_{jk} }}e_{ij}e_{kl}\\ &=\lm \sum_ie_{ii}\sum_ke_{kk} +\mu\sum_{ij}e_{ij}e_{ij} +\mu\sum_{ij}e_{ij}e_{ji}\\ &=\lm\sex{\sum_ie_{ii}}^2 +2\mu\sum_{i,j}e_{ij}^2. \eea \eeex$$
(2) 若 $\lm>0$, 则 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}\geq 2\mu|{\bf E}|^2; \eex$$ 若 $\lm<0$, 则 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}\geq 3\lm\sum_ie_{ii}^2+2\mu\sum_{i,j}e_{ij}^2 \geq (2\mu+3\lm)|{\bf E}|^2. \eex$$
(3) $\ra$: 取 ${\bf E}=\sex{\ba{ccc} 0&1&0\\ 1&0&0\\ 0&0&0 \ea}$, 有 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}=4\mu>0; \eex$$ 取 ${\bf E}=\sex{\ba{ccc} 1&0&0\\ 0&1&0\\ 0&0&1 \ea}$, 有 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}=9\lm+6\mu>0. \eex$$
[物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件的更多相关文章
- [物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件
在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0. \eex$$ 证明: (1) ...
- [物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达
设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式. 证明: 若贮能函数 $W$ 满足 ...
- [物理学与PDEs]第2章习题1 无旋时的 Euler 方程
试证明: 当流场为无旋, 即 $\rot{\bf u}={\bf 0}$ 时, 理想流体的 Euler 方程可写为如下形式: $$\bex \cfrac{\p {\bf u}}{\p t}+\n \c ...
- [物理学与PDEs]第1章习题11 各向同性导体中电荷分布的指数衰减
在各向同性的导体中, Ohm 定律具有如下形式: $$\bex {\bf j}=\sigma {\bf E}, \eex$$ 其中 $\sigma$ 称为电导率. 试证在真空中导体的连续性方程为 $$ ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
随机推荐
- Extending the Yahoo! Streaming Benchmark
could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...
- kernel笔记——进程调度
调度器完成以下任务: 时钟中断(或类似的定时器)时间内刷新进程的时间片,设置进程调度标志 系统调用返回或中断完成时检查调度标志 schedule函数 内核代码中完成进程调度的函数为schedule() ...
- UVALive - 5135 - Mining Your Own Business(双连通分量+思维)
Problem UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...
- CSAPP:第九章 虚拟内存
CSAPP:第九章 虚拟内存 关键点:虚拟内存.物理内存 9.1 物理地址和虚拟地址9.2 地址空间9.3 虚拟内存作为缓存的公工具 9.1 物理地址和虚拟地址 计算机的主存被组织成一个由M个连续 ...
- 第1章 初始Docker容器
1.1 什么是Docker slogan:Build Ship Run Any App Anywher.关键在于Ship,通过把程序和程序运行所需要的环境一起交付. Linux容器技术: Docker ...
- php 表单提交大量数据发生丢失的解决方法
最近在项目中,出现一个奇怪的现象,有一个大form里面有上千个input,提交的时候,老是发现post过来的数据不完整,一开始还怀疑是html 表单名称有冲突,排除掉了.然后,网上找了一堆,php.i ...
- STM32F40G-EVAL_UC/OS III
micrum官网下载uc/os程序包: 包含文件cotex_M4.h:
- Linux内存管理 (23)一个内存Oops解析
专题:Linux内存管理专题 关键词:DataAbort.fsr.pte.backtrace.stack. 在内存相关实际应用中,内存异常访问是一种常见的问题. 本文结合异常T32栈回溯.Oops ...
- yafu安装使用方法以及mismatched parens解决方法
yafu用于自动整数因式分解,在RSA中,当p.q的取值差异过大或过于相近的时候,使用yafu可以快速的把n值分解出p.q值,原理是使用Fermat方法与Pollard rho方法等. 再摘录官方的一 ...
- Luogu4755 Beautiful Pair 最值分治、主席树
传送门 整天做一些模板题感觉药丸 设\(val_i\)表示第\(i\)个位置的值 看到区间最大值考虑最值分治.对于当前的区间\([l,r]\),找到区间最大值\(mid\),递归\([l,mid-1] ...